Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Immunol ; 24(6): 925-940, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37188941

RESUMO

Aging accounts for increased risk and dismal outcome of ischemic stroke. Here, we investigated the impact of age-related changes in the immune system on stroke. Upon experimental stroke, compared with young mice, aged mice had increased neutrophil clogging of the ischemic brain microcirculation, leading to worse no-reflow and outcomes. Aged mice showed an enhanced granulopoietic response to stroke that led to the accumulation of CD101+CD62Llo mature and CD177hiCD101loCD62Llo and CD177loCD101loCD62Lhi immature atypical neutrophils in the blood, endowed with increased oxidative stress, phagocytosis and procoagulant features. Production of CXCL3 by CD62Llo neutrophils of the aged had a key role in the development and pathogenicity of aging-associated neutrophils. Hematopoietic stem cell rejuvenation reverted aging-associated neutropoiesis and improved stroke outcome. In elderly patients with ischemic stroke, single-cell proteome profile of blood leukocytes identified CD62Llo neutrophil subsets associated with worse reperfusion and outcome. Our results unveil how stroke in aging leads to a dysregulated emergency granulopoiesis impacting neurological outcome.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Neutrófilos , Leucócitos , Acidente Vascular Cerebral/patologia , Envelhecimento , AVC Isquêmico/patologia
2.
J Clin Immunol ; 43(2): 299-307, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36374363

RESUMO

PURPOSE: Little is known about vaccine safety in inborn errors of immunity (IEI) patients during the current vaccination campaign for COVID-19. To better investigate the reactogenicity and adverse event profile after two, three, and four doses of mRNA vaccines, we conducted an observational, multicentric study on 342 PID patients from four Italian Referral Centres. METHODS: We conducted a survey on self-reported adverse reactions in IEI patients who received mRNA vaccine by administering a questionnaire after each dose. RESULTS: Over the whole study period, none of the patients needed hospitalization or had hypersensitivity reactions, including anaphylaxis and delayed injection site reaction. After two vaccination doses, 35.4% of patients showed only local reactogenicity-related symptoms (RrS), 44.4% reported both systemic and local RrS, and 5% reported only systemic RrS. In more than 60% of cases, local or systemic RrS were mild. After the first and second booster doses, patients showed fewer adverse events (AEs) than after the first vaccination course. Patients aged 50 years and older reported adverse events and RrS less frequently. Among AEs requiring treatment, one common variable immune deficiency patient affected by T cell large granular lymphocytic leukemia developed neutropenia and one patient had Bell's paralysis perhaps during herpes zoster reactivation. CONCLUSION: Although our follow-up period is relatively short, the safety data we reported are reassuring. This data would help to contrast the vaccine hesitancy often manifested by patients with IEI and to better inform their healthcare providers.


Assuntos
Anafilaxia , Vacinas contra COVID-19 , COVID-19 , Idoso , Humanos , Pessoa de Meia-Idade , Anafilaxia/etiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , RNA Mensageiro , Vacinação/efeitos adversos
3.
J Virol ; 96(19): e0112222, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36121298

RESUMO

Zika virus (ZIKV) is an arbovirus member of the Flaviviridae family that causes severe congenital brain anomalies in infected fetuses. The key target cells of ZIKV infection, human neural progenitor cells (hNPCs), are highly permissive to infection that causes the inhibition of cell proliferation and induces cell death. We have previously shown that pharmaceutical-grade heparin inhibits virus-induced cell death with negligible effects on in vitro virus replication in ZIKV-infected hNPCs at the "high" multiplicity of infection (MOI) of 1. Here, we show that heparin inhibits formation of ZIKV-induced intracellular vacuoles, a signature of paraptosis, and inhibits necrosis and apoptosis of hNPCs grown as neurospheres (NS). To test whether heparin preserved the differentiation of ZIKV-infected hNPCs into neuroglial cells, hNPCs were infected at the MOI of 0.001. In this experimental condition, heparin inhibited ZIKV replication by ca. 2 log10, mostly interfering with virion attachment, while maintaining its protective effect against ZIKV-induced cytopathicity. Heparin preserved differentiation into neuroglial cells of hNPCs that were obtained from either human-induced pluripotent stem cells (hiPSC) or by fetal tissue. Quite surprisingly, multiple additions of heparin to hNPCs enabled prolonged virus replication while preventing virus-induced cytopathicity. Collectively, these results highlight the potential neuroprotective effect of heparin that could serve as a lead compound to develop novel agents for preventing the damage of ZIKV infection on the developing brain. IMPORTANCE ZIKV is a neurotropic virus that invades neural progenitor cells (NPCs), causing inhibition of their proliferation and maturation into neurons and glial cells. We have shown previously that heparin, an anticoagulant also used widely during pregnancy, prevents ZIKV-induced cell death with negligible inhibition of virus replication. Here, we demonstrate that heparin also exerts antiviral activity against ZIKV replication using a much lower infectious inoculum. Moreover, heparin interferes with different modalities of virus-induced cell death. Finally, heparin-induced prevention of virus-induced NPC death allows their differentiation into neuroglial cells despite the intracellular accumulation of virions. These results highlight the potential use of heparin, or pharmacological agents derived from it, in pregnant women to prevent the devastating effects of ZIKV infection on the developing brain of their fetuses.


Assuntos
Heparina , Células-Tronco Neurais , Fármacos Neuroprotetores , Zika virus , Anticoagulantes/farmacologia , Antivirais/farmacologia , Morte Celular/efeitos dos fármacos , Diferenciação Celular , Heparina/farmacologia , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/virologia , Neuroglia/citologia , Neuroglia/virologia , Fármacos Neuroprotetores/farmacologia , Replicação Viral , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Infecção por Zika virus/tratamento farmacológico
4.
BMC Public Health ; 22(1): 441, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246098

RESUMO

BACKGROUND: In response to the COVID-19 health emergency, mass media widely spread guidelines to stop the virus transmission, leading to an excessive and unaware use of detergents and disinfectants. In Italy and in other countries this tendency caused a significant increase of exposures to these products in 2020. Evaluating data collected by the Italian Pavia Poison Centre (PPC), this study intends to examine the relationship between the COVID-19 lockdown and the variations of exposures to specific product categories possibly associated to the containment measures implemented. Simultaneously, this work shows the effectiveness of the European Product Categorisation System (EuPCS) in surveillance activities of dangerous chemicals. METHODS: Exposure cases managed by the PPC during March-May 2020 (lockdown) and during the same months of 2017-2018-2019 were compared. Differences in categorical variables were tested with the Chi-square test. The level of significance was set at Alpha = .05. The study included all EuPCS groups but specifically focused on cleaners, detergents, biocides and cosmetics. RESULTS: During the lockdown, calls from private citizens showed a highly significant increase (+ 11.5%, p < .001) and occupational exposures decreased (- 11.7%, p = .011). Among Cleaners, exposures to Bleaches slightly increased while Drain cleaning products went through a significant reduction (- 13.9%, p = .035). A highly significant increase of exposures to Disinfectants was observed (+ 7.7%, p = .007), particularly to those for surfaces (+ 6.8%, p = .039). Regarding Cosmetics, both handwashing soaps and gel products significantly increased (respectively: + 25.0, p = .016 and + 9.7%, p = .028). Among children 1-5 years, the statistical significance is reached with exposures to Dishwashing detergents (+ 13.1%, p = .032), handwashing soaps (+ 28.6%, p = .014) and handwashing gel products (+ 16.8%, p = .010). Contrarily, Liquid Laundry Detergent Capsules decreased in a highly significant manner (- 25%; p = .001). The general severity of exposures showed a highly significant decrease (Moderate: - 10.1%, p = .0002). CONCLUSIONS: This study investigated the relationship between the COVID-19 lockdown and the variations of exposures to some product categories related to the containment measures. The results obtained support any action to be taken by Competent Authorities to implement measures for a safer use of cleaners/disinfectants. This paper shows the benefit in applying the EuPCS to categorize products according to their intended use, though an extension of this system to products not covered by CLP Regulation may be a further advantage.


Assuntos
COVID-19 , COVID-19/prevenção & controle , Criança , Controle de Doenças Transmissíveis , Humanos , Itália/epidemiologia , Pandemias/prevenção & controle , Centros de Controle de Intoxicações , SARS-CoV-2
5.
J Neurosci ; 39(28): 5481-5492, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31138656

RESUMO

Myelin loss occurring in demyelinating diseases, including multiple sclerosis, is the leading cause of long-lasting neurological disability in adults. While endogenous remyelination, driven by resident oligodendrocyte precursor cells (OPCs), might partially compensate myelin loss in the early phases of demyelinating disorders, this spontaneous reparative potential fails at later stages. To investigate the cellular mechanisms sustaining endogenous remyelination in demyelinating disorders, we focused our attention on endogenous neural precursor cells (eNPCs) located within the subventricular zone (SVZ) since this latter area is considered one of the primary sources of new OPCs in the adult forebrain. First, we fate mapped SVZ-eNPCs in cuprizone-induced demyelination and found that SVZ endogenous neural stem/precursor cells are recruited during the remyelination phase to the corpus callosum (CC) and are capable of forming new oligodendrocytes. When we ablated SVZ-derived eNPCs during cuprizone-induced demyelination in female mice, the animals displayed reduced numbers of oligodendrocytes within the lesioned CC. Although this reduction in oligodendrocytes did not impact the ensuing remyelination, eNPC-ablated mice experienced increased axonal loss. Our results indicate that, in toxic models of demyelination, SVZ-derived eNPCs contribute to support axonal survival.SIGNIFICANCE STATEMENT One of the significant challenges in MS research is to understand the detrimental mechanisms leading to the failure of CNS tissue regeneration during disease progression. One possible explanation is the inability of recruited oligodendrocyte precursor cells (OPCs) to complete remyelination and to sustain axonal survival. The contribution of endogenous neural precursor cells (eNPCs) located in the subventricular zone (SVZ) to generate new OPCs in the lesion site has been debated. Using transgenic mice to fate map and to selectively kill SVZ-derived eNPCs in the cuprizone demyelination model, we observed migration of SVZ-eNPCs after injury and their contribution to oligodendrogenesis and axonal survival. We found that eNPCs are dispensable for remyelination but protect partially from increased axonal loss.


Assuntos
Corpo Caloso/metabolismo , Doenças Desmielinizantes/metabolismo , Ventrículos Laterais/citologia , Bainha de Mielina/metabolismo , Células-Tronco Neurais/citologia , Animais , Movimento Celular , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Cuprizona/toxicidade , Doenças Desmielinizantes/etiologia , Doenças Desmielinizantes/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo
6.
Pharmacol Res ; 141: 189-200, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593851

RESUMO

Topiramate is an anticonvulsant drug also prescribed for migraine prophylaxis that acts through several mechanisms of action. Several studies indicate that topiramate induces weight loss and a moderate reduction of plasma lipids and glucose. Based on these favourable metabolic effects, aim of this study was to evaluate if topiramate could modulate atherosclerosis development and protect target organs of dysmetabolic conditions. Thirty apoE-deficient mice were divided into three groups and fed for 12 weeks a high fat diet (Control) or the same diet containing topiramate at 0.125% and 0.250%. Body weight, water and food intake were monitored throughout the study. Plasma lipids and glucose levels were measured and a glucose tolerance test was performed. Atherosclerosis development was evaluated in the whole aorta and at the aortic sinus. Histological analysis of liver, kidney and adipose tissue was performed. Topiramate did not affect weight gain and food intake. Glucose tolerance and plasma lipids were not changed and, in turn, atherosclerosis development was not different among groups. Topiramate did not modify liver and adipose tissue histology. Conversely, in the kidneys, the treatment reduced the occurrence of glomerular lipidosis by decreasing foam cells accumulation and reducing the expression of inflammatory markers. Blood urea nitrogen levels were also reduced by treatment. Our results indicate that topiramate does not affect atherosclerosis development, but preserves kidney structure and function. The study suggests that topiramate could be investigated in drug repurposing studies for the treatment of glomerular lipidosis.


Assuntos
Rim/efeitos dos fármacos , Lipidoses/prevenção & controle , Substâncias Protetoras/farmacologia , Topiramato/farmacologia , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Glicemia/análise , Dieta Hiperlipídica , Feminino , Rim/metabolismo , Rim/patologia , Lipidoses/metabolismo , Lipidoses/patologia , Lipídeos/sangue , Camundongos Knockout para ApoE
7.
J Neuroinflammation ; 15(1): 58, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29475438

RESUMO

BACKGROUND: Spinal cord injury (SCI) is a devastating condition mainly deriving from a traumatic damage of the spinal cord (SC). Immune cells and endogenous SC-neural stem cells (SC-NSCs) play a critical role in wound healing processes, although both are ineffective to completely restore tissue functioning. The role of SC-NSCs in SCI and, in particular, whether such cells can interplay with the immune response are poorly investigated issues, although mechanisms governing such interactions might open new avenues to develop novel therapeutic approaches. METHODS: We used two transgenic mouse lines to trace as well as to kill SC-NSCs in mice receiving SCI. We used Nestin CreERT2 mice to trace SC-NSCs descendants in the spinal cord of mice subjected to SCI. While mice carrying the suicide gene thymidine kinase (TK) along with the GFP reporter, under the control of the Nestin promoter regions (NestinTK mice) were used to label and selectively kill SC-NSCs. RESULTS: We found that SC-NSCs are capable to self-activate after SCI. In addition, a significant worsening of clinical and pathological features of SCI was observed in the NestinTK mice, upon selective ablation of SC-NSCs before the injury induction. Finally, mice lacking in SC-NSCs and receiving SCI displayed reduced levels of different neurotrophic factors in the SC and significantly higher number of M1-like myeloid cells. CONCLUSION: Our data show that SC-NSCs undergo cell proliferation in response to traumatic spinal cord injury. Mice lacking SC-NSCs display overt microglia activation and exaggerate expression of pro-inflammatory cytokines. The absence of SC-NSCs impaired functional recovery as well as neuronal and oligodendrocyte cell survival. Collectively our data indicate that SC-NSCs can interact with microglia/macrophages modulating their activation/responses and that such interaction is importantly involved in mechanisms leading tissue recovery.


Assuntos
Modelos Animais de Doenças , Locomoção/fisiologia , Células-Tronco Neurais/patologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Animais , Proliferação de Células/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia
9.
Exp Brain Res ; 232(7): 2439-49, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24770856

RESUMO

In multiple sclerosis (MS), inflammation leads to damage of central nervous system myelin and axons. Previous studies have postulated impaired GABA transmission in MS, and recent postmortem analysis has shown that GABAergic parvalbumin (PV)-positive interneurons are decreased in the primary motor cortex (M1) of patients with MS. In this report, we present evidence for the loss of a specific population of GABAergic interneurons in the experimental autoimmune encephalomyelitis mouse model of MS. Using experimental autoimmune encephalomyelitis, we evaluated the distribution of both PV-positive interneurons and of the inhibitory presynaptic input in the M1 of experimental autoimmune encephalomyelitis and control mice. Our results demonstrate a specific decrease in the number of PV-positive interneurons in the M1 of mice with experimental autoimmune encephalomyelitis. We detected a significant reduction in the number of PV-positive interneurons in the layers II and III of the M1 of diseased mice, while there was no difference in the number of calretinin (CR)-positive cells between animals with experimental autoimmune encephalomyelitis and control animals. Moreover, we observed a significant reduction in the inhibitory presynaptic input in the M1 of treated mice. These changes were specific for the mice with elevated clinical score, while they were not detectable in the mice with low clinical score. Our results support the hypothesis that reinforcing the action of the GABAergic network may represent a therapeutic alternative to limit the progression of the neuronal damage in MS patients.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Interneurônios/metabolismo , Córtex Motor/patologia , Inibição Neural/fisiologia , Parvalbuminas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Marcação In Situ das Extremidades Cortadas , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fragmentos de Peptídeos/toxicidade , Fatores de Tempo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
10.
Digit Health ; 10: 20552076241234639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533309

RESUMO

Objective: This study systematically summarizes the extant literature on the impacts of immersive virtual nature (IVN) on nature connectedness in the general population. Methods: Papers were considered eligible if peer-reviewed, in English language, comprising experimental or quasi-experimental trials, including at least one outcome relative to nature connectedness in the general population. Database search was conducted on Scopus, Web of Science, Google Scholar, Medline, and GreenFILE (22-28 November 2021). Risk of bias was established by the Cochrane RoB 2 tool. Data synthesis was conducted through meta-analysis according with the Cochrane Consumers and Communication Group guidelines. Results: Six eligible papers (9 studies; n = 730) were selected, in which IVN was compared to (i) non-immersive virtual nature, (ii) immersive virtual built environments, (iii) non-immersive virtual built environments, and (iv) actual nature. The risk of bias was predominantly "low" or of "some concerns." Meta-analyses showed a statistically significant overall effect for the first (g = 0.26; 95% CI = 0.06-0.45; I2 = 35%) and fourth group (g = -1.98; 95% CI = -3.21 to -0.75; I2 = 96%), the former in favor of IVN and the latter in favor of actual nature. Subgroup analyses were conducted for the first and second groups of studies to explore possible sources of heterogeneity. The small number of studies available limits the validity of the outcomes of the meta-analyses. Conclusion: The findings indicate that IVN may be an effective tool for the promotion of nature connectedness, although the evidence in this field is still limited and largely mixed. Recommendations for future research are discussed.

11.
Life (Basel) ; 14(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38541703

RESUMO

This is a multicentric investigation involving two Italian centers that examined the clinical course of COVID-19 in patients receiving biological therapy targeting type 2 inflammation and those not receiving biologicals. Since the beginning of the COVID-19 pandemic, the management of respiratory and allergic disorders and the potential impact of biological therapy in the most severe forms has been a point of uncertainty. Our multicentric investigation aimed to compare the clinical course of COVID-19 and the impact of vaccination in an Italian cohort of patients with atopic disorders caused by a type 2 inflammation, such as eosinophilic asthma, chronic rhinosinusitis with nasal polyposis (CRSwNP), atopic dermatitis (AD), and chronic spontaneous urticaria (CSU). A questionnaire was given to patients coming to our outpatient clinic for the first evaluation or follow-up visit, asking for the clinical characteristics of the infection, the ongoing therapy during the infection, any relevant change, and the patient's vaccination status. We enrolled 132 atopic patients from two Italian centers; 62 patients were on biological therapy at the time of infection (omalizumab 31%, mepolizumab 26%, benralizumab 19%, and dupilumab 24%). The median age was 56 (IQR 22.8) for patients on biologicals and 48 (IQR 26.5) for those not on biologicals (p = 0.028). The two groups were comparable in terms of sex, body mass index (BMI), smoking history, and systemic oral corticosteroid use (OCS). There were no significant differences in non-biological therapy and comorbidity between the two groups. The patients not on biological therapy had a prevalence of 87% for asthma, 52% for CRSwNP, 10% for CSU, and 6% for AD. The patients on biologicals had a prevalence of 93% for asthma, 17% for CRSwNP, and 10% for CSU. In our work, we observed that mAbs targeting type 2 inflammation in patients with COVID-19 appeared to be safe, with no worsening of symptoms, prolongation of infection, or increase in hospitalizations. Between the two groups, there were no significant differences in the duration of swab positivity (p = 0.45) and duration of symptoms (p = 0.38). During COVID-19, patients on biologicals experienced a significant increase in common cold-like symptoms (p = 0.038), dyspnea (p = 0.016), and more, but not significant, asthma exacerbations, with no significant differences between the different biologicals. Regarding the vaccination status, we observed that there was an increased number of hospitalizations among unvaccinated patients in both groups, although the difference did not reach statistical significance. No patients on biologicals reported safety issues or adverse effects associated with the use of biological treatments during COVID-19. Our investigation showed that mAbs against type 2 inflammation given during Coronavirus Disease 2019 are safe and do not impact the clinical course or main outcomes. Therefore, we found no signals suggesting that anti-Th2 biological therapy should be discontinued during SARS-CoV-2 infection. Controlled studies and analysis, including data from registries and real-life studies, are required to draw firm conclusions regarding the safety or possible advantages that anti-type 2 mAbs could offer in particular clinical contexts, such as infections.

12.
Mult Scler ; 19(8): 1084-94, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23232603

RESUMO

BACKGROUND: There are two generally accepted strategies for treating multiple sclerosis (MS), preventing central nervous system (CNS) damage indirectly through immunomodulatory interventions and/or repairing CNS damage by promoting remyelination. Both approaches also provide neuroprotection since they can prevent, indirectly or directly, axonal damage. OBJECTIVE: Recent experimental and clinical evidence indicates that the novel immunomodulatory drug laquinimod can exert a neuroprotective role in MS. Whether laquinimod-mediated neuroprotection is exerted directly on neuronal cells or indirectly via peripheral immunomodulation is still unclear. METHODS: C57Bl/6 experimental autoimmune encephalomyelitis (EAE) mice, immunised with myelin oligodendrocyte glycoprotein (MOG)35-55 peptide, were treated for 26 days with subcutaneous daily injections of laquinimod (from 1 to 25 mg/kg). Patch clamp electrophysiology was performed on acute brain striatal slices from EAE mice treated with daily (25 mg/kg) laquinimod and on acute brain striatal slices from control mice bathed with laquinimod (1-30 µM). RESULTS: Both preventive and therapeutic laquinimod treatment fully prevented the alterations of GABAergic synapses induced by EAE, the first limiting also glutamatergic synaptic alterations. This dual effect might, in turn, have limited glutamatergic excitotoxicity, a phenomenon previously observed early during EAE and possibly correlated with later axonal damage. Furthermore, laquinimod treatment also preserved cannabinoid CB1 receptor sensitivity, normally lost during EAE. Finally, laquinimod per se was able to regulate synaptic transmission by increasing inhibitory post-synaptic currents and, at the same time, reducing excitatory post-synaptic currents. CONCLUSIONS: Our data suggest a novel neuroprotective mechanism by which laquinimod might in vivo protect from neuronal damage occurring as a consequence of inflammatory immune-mediated demyelination.


Assuntos
Encéfalo/efeitos dos fármacos , Encefalomielite Autoimune Experimental/patologia , Inflamação/patologia , Fármacos Neuroprotetores/farmacologia , Quinolonas/farmacologia , Sinapses/efeitos dos fármacos , Animais , Encéfalo/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Sinapses/patologia
13.
Brain ; 135(Pt 2): 447-60, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22271661

RESUMO

Transplanted neural stem/precursor cells possess peculiar therapeutic plasticity and can simultaneously instruct several therapeutic mechanisms in addition to cell replacement. Here, we interrogated the therapeutic plasticity of neural stem/precursor cells after their focal implantation in the severely contused spinal cord. We injected syngeneic neural stem/precursor cells at the proximal and distal ends of the contused mouse spinal cord and analysed locomotor functions and relevant secondary pathological events in the mice, cell fate of transplanted neural stem/precursor cells, and gene expression and inflammatory cell infiltration at the injured site. We used two different doses of neural stem/precursor cells and two treatment schedules, either subacute (7 days) or early chronic (21 days) neural stem/precursor cell transplantation after the induction of experimental thoracic severe spinal cord injury. Only the subacute transplant of neural stem/precursor cells enhanced the recovery of locomotor functions of mice with spinal cord injury. Transplanted neural stem/precursor cells survived undifferentiated at the level of the peri-lesion environment and established contacts with endogenous phagocytes via cellular-junctional coupling. This was associated with significant modulation of the expression levels of important inflammatory cell transcripts in vivo. Transplanted neural stem/precursor cells skewed the inflammatory cell infiltrate at the injured site by reducing the proportion of 'classically-activated' (M1-like) macrophages, while promoting the healing of the injured cord. We here identify a precise window of opportunity for the treatment of complex spinal cord injuries with therapeutically plastic somatic stem cells, and suggest that neural stem/precursor cells have the ability to re-programme the local inflammatory cell microenvironment from a 'hostile' to an 'instructive' role, thus facilitating the healing or regeneration past the lesion.


Assuntos
Regeneração Nervosa/fisiologia , Células-Tronco Neurais/transplante , Fagócitos/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Diferenciação Celular , Camundongos , Atividade Motora/fisiologia , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Resultado do Tratamento
14.
Brain ; 135(Pt 11): 3320-35, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23008234

RESUMO

The functional significance of adult neural stem and progenitor cells in hippocampal-dependent learning and memory has been well documented. Although adult neural stem and progenitor cells in the subventricular zone are known to migrate to, maintain and reorganize the olfactory bulb, it is less clear whether they are functionally required for other processes. Using a conditional transgenic mouse model, selective ablation of adult neural stem and progenitor cells in the subventricular zone induced a dramatic increase in morbidity and mortality of central nervous system disorders characterized by excitotoxicity-induced cell death accompanied by reactive inflammation, such as 4-aminopyridine-induced epilepsy and ischaemic stroke. To test the role of subventricular zone adult neural stem and progenitor cells in protecting central nervous system tissue from glutamatergic excitotoxicity, neurophysiological recordings of spontaneous excitatory postsynaptic currents from single medium spiny striatal neurons were measured on acute brain slices. Indeed, lipopolysaccharide-stimulated, but not unstimulated, subventricular zone adult neural stem and progenitor cells reverted the increased frequency and duration of spontaneous excitatory postsynaptic currents by secreting the endocannabinod arachidonoyl ethanolamide, a molecule that regulates glutamatergic tone through type 1 cannabinoid receptor (CB(1)) binding. In vivo restoration of cannabinoid levels, either by administration of the type 1 cannabinoid receptor agonist HU210 or the inhibitor of the principal catabolic enzyme fatty acid amide hydrolase, URB597, completely reverted the increased morbidity and mortality of adult neural stem and progenitor cell-ablated mice suffering from epilepsy and ischaemic stroke. Our results provide the first evidence that adult neural stem and progenitor cells located within the subventricular zone exert an 'innate' homeostatic regulatory role by protecting striatal neurons from glutamate-mediated excitotoxicity.


Assuntos
Corpo Estriado/fisiologia , Ácido Glutâmico/fisiologia , Ventrículos Laterais/fisiologia , Células-Tronco Neurais/fisiologia , Fármacos Neuroprotetores/metabolismo , Células-Tronco/fisiologia , 4-Aminopiridina/antagonistas & inibidores , Amidoidrolases/antagonistas & inibidores , Animais , Ácidos Araquidônicos/biossíntese , Ácidos Araquidônicos/metabolismo , Benzamidas/farmacologia , Carbamatos/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Dronabinol/análogos & derivados , Dronabinol/farmacologia , Endocanabinoides/biossíntese , Endocanabinoides/metabolismo , Epilepsia/metabolismo , Epilepsia/mortalidade , Epilepsia/fisiopatologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ganciclovir , Ácido Glutâmico/farmacologia , Ventrículos Laterais/fisiopatologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/efeitos dos fármacos , Alcamidas Poli-Insaturadas , Células-Tronco/efeitos dos fármacos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/mortalidade , Acidente Vascular Cerebral/fisiopatologia
15.
Invest Ophthalmol Vis Sci ; 64(15): 13, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088826

RESUMO

Purpose: To determine if circulating antiretinal antibodies (ARAs) differ between patients affected by retinitis pigmentosa (RP) and control participants and to assess whether ARAs are associated with clinical outcomes in patients with RP. Methods: Cross-sectional study involving a group of patients clinically diagnosed with RP and a control group of healthy participants. Serum autoantibodies against enolase, heat shock protein 70 (HSP70), and carbonic anhydrase II (CAII) were tested in all participants using Jess capillary Western blot. We compared ARA prevalence between the RP and control groups and investigated the association of serum ARA positivity with macular edema and vitreomacular disorders in patients affected by RP. Results: Thirty-six patients affected by RP and a control group of 39 healthy individuals were included. Overall, at least one ARA positivity was detected in 89% and 80% of participants in the RP and control groups, respectively. We observed a similar prevalence of anti-CAII and anti-enolase ARA between patients and controls (P = 0.87 and P = 0.35, respectively). Sera from patients with RP tested positive for anti-HSP70 ARAs more frequently than those from controls (53% vs. 36%), albeit without reaching statistical significance (P = 0.29). Among the 72 eyes with RP, 25% presented with macular edema (most often bilateral) and 33% with epiretinal membrane and/or lamellar macular hole. None of the three ARAs was associated with an increased risk of any macular complications in eyes affected by RP (all P > 0.05). Conclusions: The prevalence of circulating ARAs against enolase, HSP70, and CAII is similar between patients affected by RP and healthy individuals. Our results provide evidence against the association of ARAs with macular edema and vitreomacular interface disorders in RP.


Assuntos
Edema Macular , Retinose Pigmentar , Humanos , Edema Macular/diagnóstico , Edema Macular/etiologia , Estudos Transversais , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/complicações , Retina , Fosfopiruvato Hidratase , Tomografia de Coerência Óptica/métodos
16.
Nat Med ; 29(1): 75-85, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36624312

RESUMO

Innovative pro-regenerative treatment strategies for progressive multiple sclerosis (PMS), combining neuroprotection and immunomodulation, represent an unmet need. Neural precursor cells (NPCs) transplanted in animal models of multiple sclerosis have shown preclinical efficacy by promoting neuroprotection and remyelination by releasing molecules sustaining trophic support and neural plasticity. Here we present the results of STEMS, a prospective, therapeutic exploratory, non-randomized, open-label, single-dose-finding phase 1 clinical trial ( NCT03269071 , EudraCT 2016-002020-86), performed at San Raffaele Hospital in Milan, Italy, evaluating the feasibility, safety and tolerability of intrathecally transplanted human fetal NPCs (hfNPCs) in 12 patients with PMS (with evidence of disease progression, Expanded Disability Status Scale ≥6.5, age 18-55 years, disease duration 2-20 years, without any alternative approved therapy). The safety primary outcome was reached, with no severe adverse reactions related to hfNPCs at 2-year follow-up, clearly demonstrating that hfNPC therapy in PMS is feasible, safe and tolerable. Exploratory secondary analyses showed a lower rate of brain atrophy in patients receiving the highest dosage of hfNPCs and increased cerebrospinal fluid levels of anti-inflammatory and neuroprotective molecules. Although preliminary, these results support the rationale and value of future clinical studies with the highest dose of hfNPCs in a larger cohort of patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Esclerose Múltipla , Células-Tronco Neurais , Adolescente , Adulto , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Esclerose Múltipla/terapia , Estudos Prospectivos , Transplante de Células-Tronco/métodos
17.
Digit Health ; 8: 20552076221120324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081751

RESUMO

Objective: Nature Connectedness, an individual's cognitive, affective, and behavioral connection with the natural world, has been linked to various health and well-being outcomes. As Nature Connectedness can be elicited and strengthened through direct contact with nature, in the past decade studies have investigated whether similar effects can be achieved through technologies that simulate highly immersive and realistic experiences of nature, such as Immersive Virtual Nature. This protocol describes the methodology for a systematic review that will summarize the existing evidence on the effects of Immersive Virtual Nature on Nature Connectedness in non-clinical populations. Methods: The review will be conducted following the guidelines of Preferred Reporting Items for Systematic Reviews and MetaAnalyses. Terms such as "immersive virtual environment," "natural setting*," and "contact with nature" were searched in Scopus, WebOfScience, GoogleScholar, Medline, and GreenFILE (22-28 November 2021). Papers in English, describing experimental studies, with or without control/comparison, and testing the effects of Immersive Virtual Nature interventions on Nature Connectedness outcomes in non-clinical populations were included. The risk of bias will be assessed using Cochrane's Risk of Bias 2 for randomized studies, and the Risk Of Bias In Non-randomized Studies - of Interventions. The data synthesis will be performed through meta-analysis, assuming that the Cochrane Consumers and Communication Group guidelines are met. Conclusion: The findings will be relevant for understanding the potential and challenges of Immersive Virtual Nature as a tool to promote health and well-being in the general population, providing information on the consistency and limitations of the existing literature and recommendations for future research.

18.
Nat Commun ; 13(1): 7579, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482070

RESUMO

The adult brain retains over life endogenous neural stem/precursor cells (eNPCs) within the subventricular zone (SVZ). Whether or not these cells exert physiological functions is still unclear. In the present work, we provide evidence that SVZ-eNPCs tune structural, electrophysiological, and behavioural aspects of striatal function via secretion of insulin-like growth factor binding protein-like 1 (IGFBPL1). In mice, selective ablation of SVZ-eNPCs or selective abrogation of IGFBPL1 determined an impairment of striatal medium spiny neuron morphology, a higher failure rate in GABAergic transmission mediated by fast-spiking interneurons, and striatum-related behavioural dysfunctions. We also found IGFBPL1 expression in the human SVZ, foetal and induced-pluripotent stem cell-derived NPCs. Finally, we found a significant correlation between SVZ damage, reduction of striatum volume, and impairment of information processing speed in neurological patients. Our results highlight the physiological role of adult SVZ-eNPCs in supporting cognitive functions by regulating striatal neuronal activity.


Assuntos
Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Ventrículos Laterais , Células-Tronco Neurais , Proteínas Supressoras de Tumor , Animais , Humanos , Camundongos , Eletrofisiologia Cardíaca , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/fisiologia , Células-Tronco Neurais/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Ventrículos Laterais/fisiologia
19.
Nature ; 436(7048): 266-71, 2005 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16015332

RESUMO

In degenerative disorders of the central nervous system (CNS), transplantation of neural multipotent (stem) precursor cells (NPCs) is aimed at replacing damaged neural cells. Here we show that in CNS inflammation, NPCs are able to promote neuroprotection by maintaining undifferentiated features and exerting unexpected immune-like functions. In a mouse model of chronic CNS inflammation, systemically injected adult syngeneic NPCs use constitutively activated integrins and functional chemokine receptors to selectively enter the inflamed CNS. These undifferentiated cells survive repeated episodes of CNS inflammation by accumulating within perivascular areas where reactive astrocytes, inflamed endothelial cells and encephalitogenic T cells produce neurogenic and gliogenic regulators. In perivascular CNS areas, surviving adult NPCs induce apoptosis of blood-borne CNS-infiltrating encephalitogenic T cells, thus protecting against chronic neural tissue loss as well as disease-related disability. These results indicate that undifferentiated adult NPCs have relevant therapeutic potential in chronic inflammatory CNS disorders because they display immune-like functions that promote long-lasting neuroprotection.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/terapia , Células-Tronco Multipotentes/imunologia , Células-Tronco Multipotentes/transplante , Fármacos Neuroprotetores/metabolismo , Transplante de Células-Tronco , Animais , Apoptose , Transplante de Tecido Encefálico , Adesão Celular , Diferenciação Celular , Sistema Nervoso Central/irrigação sanguínea , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Quimiotaxia , Doença Crônica , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Inflamação/imunologia , Inflamação/patologia , Integrina alfa4beta1/metabolismo , Camundongos , Microesferas , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/fisiologia , Receptores de Quimiocinas/metabolismo , Linfócitos T/imunologia , Linfócitos T/patologia
20.
J Psychoactive Drugs ; 53(3): 247-255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33470904

RESUMO

A number of new psychoactive substances (NPS) have been released in the last decade, and the list of NPS continues to grow. This paper reports a retrospective evaluation of the toxicological analyses in 1,445 suspected intoxication cases by psychostimulant, hallucinogen, and dissociative NPS occurring in hospitals across Italy from 2011 to 2019. The objectives of the study were to contribute to the monitoring of the NPS diffusion based on analytically confirmed intoxications, and to evaluate the importance of the clinical toxicological laboratory in the diagnosis of NPS intoxication. For at least one NPS of the considered classes, 246 patients (17.0%) tested positive. Forty-four different NPS were detected and a consistent turnover was observed during the nine-year period, especially regarding cathinones. Among the positive cases, 47.2% tested positive for dissociative NPS, with particular regard to ketamine. Hallucinogens (30.9%) was the second most frequent NPS involved. Stimulants were found in 20% of the positive cases with a considerable presence of cathinones. Findings confirm the dynamism of the NPS phenomenon, underline the importance of awareness of this new public health threat among health care professionals, and highlight the need for analytical confirmation for the identification of the drugs in forensic contexts.


Assuntos
Estimulantes do Sistema Nervoso Central , Alucinógenos , Alucinógenos/efeitos adversos , Humanos , Itália/epidemiologia , Prevalência , Psicotrópicos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa