Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Skin Res Technol ; 29(11): e13508, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38009044

RESUMO

BACKGROUND: The quality of dermoscopic images is affected by lighting conditions, operator experience, and device calibration. Color constancy algorithms reduce this variability by making images appear as if they were acquired under the same conditions, allowing artificial intelligence (AI)-based methods to achieve better results. The impact of color constancy algorithms has not yet been evaluated from a clinical dermatologist's workflow point of view. Here we propose an in-depth investigation of the impact of an AI-based color constancy algorithm, called DermoCC-GAN, on the skin lesion diagnostic routine. METHODS: Three dermatologists, with different experience levels, carried out two assignments. The clinical experts evaluated key parameters such as perceived image quality, lesion diagnosis, and diagnosis confidence. RESULTS: When the DermoCC-GAN color constancy algorithm was applied, the dermoscopic images were perceived to be of better quality overall. An increase in classification performance was observed, reaching a maximum accuracy of 74.67% for a six-class classification task. Finally, the use of normalized images results in an increase in the level of self-confidence in the qualitative diagnostic routine. CONCLUSIONS: From the conducted analysis, it is evident that the impact of AI-based color constancy algorithms, such as DermoCC-GAN, is positive and brings qualitative benefits to the clinical practitioner.


Assuntos
Melanoma , Dermatopatias , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/patologia , Melanoma/patologia , Inteligência Artificial , Dermoscopia/métodos , Algoritmos , Dermatopatias/diagnóstico por imagem
2.
Diagnostics (Basel) ; 14(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38928633

RESUMO

Recent years have ushered in a transformative era in in vitro modeling with the advent of organoids, three-dimensional structures derived from stem cells or patient tumor cells. Still, fully harnessing the potential of organoids requires advanced imaging technologies and analytical tools to quantitatively monitor organoid growth. Optical coherence tomography (OCT) is a promising imaging modality for organoid analysis due to its high-resolution, label-free, non-destructive, and real-time 3D imaging capabilities, but accurately identifying and quantifying organoids in OCT images remain challenging due to various factors. Here, we propose an automatic deep learning-based pipeline with convolutional neural networks that synergistically includes optimized preprocessing steps, the implementation of a state-of-the-art deep learning model, and ad-hoc postprocessing methods, showcasing good generalizability and tracking capabilities over an extended period of 13 days. The proposed tracking algorithm thoroughly documents organoid evolution, utilizing reference volumes, a dual branch analysis, key attribute evaluation, and probability scoring for match identification. The proposed comprehensive approach enables the accurate tracking of organoid growth and morphological changes over time, advancing organoid analysis and serving as a solid foundation for future studies for drug screening and tumor drug sensitivity detection based on organoids.

3.
Comput Methods Programs Biomed ; 225: 107040, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35932723

RESUMO

BACKGROUND AND OBJECTIVE: Dermatological images are typically diagnosed based on visual analysis of the skin lesion acquired using a dermoscope. However, the final quality of the acquired image is highly dependent on the illumination conditions during the acquisition phase. This variability in the light source can affect the dermatologist's diagnosis and decrease the accuracy of computer-aided diagnosis systems. Color constancy algorithms have proven to be a powerful tool to address this issue by allowing the standardization of the image illumination source, but the most commonly used algorithms still present some inherent limitations due to assumptions made on the original image. In this work, we propose a novel Dermatological Color Constancy Generative Adversarial Network (DermoCC-GAN) algorithm to overcome the current limitations by formulating the color constancy task as an image-to-image translation problem. METHODS: A generative adversarial network was trained with a custom heuristic algorithm that performs well on the training set. The model hence learns the domain transfer task (from original to color standardized image) and is then able to accurately apply the color constancy on test images characterized by different illumination conditions. RESULTS: The proposed algorithm outperforms state-of-the-art color constancy algorithms for dermatological images in terms of normalized median intensity and when using the color-normalized images in a deep learning framework for lesion classification (accuracy of the seven-class classifier: 79.2%) and segmentation (dice score: 90.9%). In addition, we validated the proposed approach on two different external datasets with highly satisfactory results. CONCLUSIONS: The novel strategy presented here shows how it is possible to generalize a heuristic method for color constancy for dermatological image analysis by training a GAN. The overall approach presented here can be easily extended to numerous other applications.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos
4.
Diagnostics (Basel) ; 12(6)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35741181

RESUMO

Background: Due to the COVID-19 pandemic, teledermoscopy has been increasingly used in the remote diagnosis of skin cancers. In a study conducted in 2020, we demonstrated a potential role of an inexpensive device (NurugoTM Derma) as a first triage to select the skin lesions that require a face-to-face consultation with dermatologists. Herein, we report the results of a novel study that aimed to better investigate the performance of NurugoTM. Objectives: (i) verify whether the NurugoTM can be a communication tool between the general practitioner (GP) and dermatologist in the first assessment of skin lesions, (ii) analyze the degree of diagnostic-therapeutic agreement between dermatologists, (iii) estimate the number of potentially serious diagnostic errors. Methods: One hundred and forty-four images of skin lesions were collected at the Dermatology Outpatient Clinic in Novara using a conventional dermatoscope (instrument F), the NurugoTM (instrument N), and the latter with the interposition of a laboratory slide (instrument V). The images were evaluated in-blind by four dermatologists, and each was asked to make a diagnosis and to specify a possible treatment. Results: Our data show that F gave higher agreement values for all dermatologists, concerning the real clinical diagnosis. Nevertheless, a medium/moderate agreement value was obtained also for N and V instruments and that can be considered encouraging and indicate that all examined tools can potentially be used for the first screening of skin lesions. The total amount of misclassified lesions was limited (especially with the V tool), with up to nine malignant lesions wrongly classified as benign. Conclusions: NurugoTM, with adequate training, can be used to build a specific support network between GP and dermatologist or between dermatologists. Furthermore, its use could be extended to the diagnosis and follow-up of other skin diseases, especially for frail patients in emergencies, such as the current pandemic context.

5.
Diagnostics (Basel) ; 11(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807976

RESUMO

BACKGROUND: The use of teledermatology has spread over the last years, especially during the recent SARS-Cov-2 pandemic. Teledermoscopy, an extension of teledermatology, consists of consulting dermoscopic images, also transmitted through smartphones, to remotely diagnose skin tumors or other dermatological diseases. The purpose of this work was to verify the diagnostic validity of images acquired with an inexpensive smartphone microscope (NurugoTM), employing convolutional neural networks (CNN) to classify malignant melanoma (MM), melanocytic nevus (MN), and seborrheic keratosis (SK). METHODS: The CNN, trained with 600 dermatoscopic images from the ISIC (International Skin Imaging Collaboration) archive, was tested on three test sets: ISIC images, images acquired with the NurugoTM, and images acquired with a conventional dermatoscope. RESULTS: The results obtained, although with some limitations due to the smartphone device and small data set, were encouraging, showing comparable results to the clinical dermatoscope and up to 80% accuracy (out of 10 images, two were misclassified) using the NurugoTM demonstrating how an amateur device can be used with reasonable levels of diagnostic accuracy. CONCLUSION: Considering the low cost and the ease of use, the NurugoTM device could be a useful tool for general practitioners (GPs) to perform the first triage of skin lesions, aiding the selection of lesions that require a face-to-face consultation with dermatologists.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa