RESUMO
Cationic and amphiphilic peptides can be used as homing devices to accumulate conjugated antibiotics to bacteria-enriched sites and promote efficient microbial killing. However, just as important as tackling bacterial infections, is the modulation of the immune response in this complex microenvironment. In the present report, we designed a peptide chimaera called Chim2, formed by a membrane-active module, an enzyme hydrolysis site and a formyl peptide receptor 2 (FPR2) agonist. This molecule was designed to adsorb onto bacterial membranes, promote their lysis, and upon hydrolysis by local enzymes, release the FPR2 agonist sequence for activation and recruitment of immune cells. We synthesized the isolated peptide modules of Chim2 and characterized their biological activities independently and as a single polypeptide chain. We conducted antimicrobial assays, along with other tests aiming at the analyses of the cellular and immunological responses. In addition, assays using vesicles as models of eukaryotic and prokaryotic membranes were conducted and solution structures of Chim2 were generated by 1H NMR. Chim2 is antimicrobial, adsorbs preferentially to negatively charged vesicles while adopting an α-helix structure and exposes its disorganized tail to the solvent, which facilitates hydrolysis by tryptase-like enzymes, allowing the release of the FPR2 agonist fragment. This fragment was shown to induce accumulation of the cellular activation marker, lipid bodies, in mouse macrophages and the release of immunomodulatory interleukins. In conclusion, these data demonstrate that peptides with antimicrobial and immunomodulatory activities can be considered for further development as drugs.
Assuntos
Anti-Infecciosos , Receptores de Formil Peptídeo , Animais , Camundongos , Antibacterianos/farmacologia , Anti-Infecciosos/química , Bactérias , Membranas , Receptores de Formil Peptídeo/antagonistas & inibidoresRESUMO
Snake venoms contain various bradykinin-potentiating peptides (BPPs). First studied for their vasorelaxant properties due to angiotensin converting enzyme (ACE) inhibition, these molecules present a range of binding partners, among them the argininosuccinate synthase (AsS) enzyme. This has renewed interest in their characterization from biological sources and the evaluation of their pharmacological activities. In the present work, the low molecular weight fraction of Bothrops moojeni venom was obtained and BPPs were characterized by mass spectrometry. Eleven BPPs or related peptides were sequenced, and one of them, BPP-Bm01, was new. Interestingly, some oxidized BPPs were detected. The three most abundant peptides were BPP-Bm01, BPP-Bax12, and BPP-13a, and their putative interactions with the AsS enzyme were investigated in silico. A binding cavity for these molecules was predicted, and docking studies allowed their ranking. Three peptides were synthesized and submitted to vasorelaxation assays using rat aortic rings. While all BPPs were active, BPP-Bm01 showed the highest potency in this assay. This work adds further diversity to BPPs from snake venoms and suggests, for the first time, a putative binding pocket for these molecules in the AsS enzyme. This can guide the design of new and more potent AsS activators.
Assuntos
Aorta , Bothrops , Oligopeptídeos , Peptídeos , Serpentes Peçonhentas , Animais , Ratos , Brasil , Aorta/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Bradicinina/farmacologia , Masculino , Venenos de Crotalídeos/farmacologia , Venenos de Crotalídeos/química , Ratos Wistar , Venenos de Serpentes/farmacologia , Vasodilatadores/farmacologia , Vasodilatadores/química , Estrutura MolecularRESUMO
Tryptophyllins constitute a heterogeneous group of peptides that are one of the first classes of peptides identified from amphibian's skin secretions. Here, we report the structural characterization and antioxidant properties of a novel tryptophyllin-like peptide, named PpT-2, isolated from the Iberian green frog Pelophylax perezi. The skin secretion of P. perezi was obtained by electrical stimulation and fractionated using RP-HPLC. De novo peptide sequencing was conducted using MALDI MS/MS. The primary structure of PpT-2 (FPWLLS-NH2 ) was confirmed by Edman degradation and subsequently investigated using in silico tools. PpT-2 shared physicochemical properties with other well-known antioxidants. To test PpT-2 for antioxidant activity in vitro, the peptide was synthesized by solid phase and assessed in the chemical-based ABTS and DPPH scavenging assays. Then, a flow cytometry experiment was conducted to assess PpT-2 antioxidant activity in oxidatively challenged murine microglial cells. As predicted by the in silico analyses, PpT-2 scavenged free radicals in vitro and suppressed the generation of reactive species in PMA-stimulated BV-2 microglia cells. We further explored possible bioactivities of PpT-2 against prostate cancer cells and bacteria, against which the peptide exerted a moderate antiproliferative effect and negligible antimicrobial activity. The biocompatibility of PpT-2 was evaluated in cytotoxicity assays and in vivo toxicity with Galleria mellonella. No toxicity was detected in cells treated with up to 512 µg/ml and in G. mellonella treated with up to 40 mg/kg PpT-2. This novel peptide, PpT-2, stands as a promising peptide with potential therapeutic and biotechnological applications, mainly for the treatment/prevention of neurodegenerative disorders.
Assuntos
Antioxidantes , Fármacos Neuroprotetores , Animais , Antioxidantes/metabolismo , Anuros/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Peptídeos/química , Ranidae/metabolismo , Relação Estrutura-Atividade , Espectrometria de Massas em TandemRESUMO
In this study, we report the isolation, characterization, and synthesis of the peptide BmT-2 belonging to the tryptophyllins family, isolated from the venom of the snake Bothrops moojeni. This is the first time a tryptophyllin is identified in snake venom. We tested whether BmT-2 had cytotoxic effects and antioxidant activity in a set of experiments that included both in vitro and cell-based assays. BmT-2 presented a radical scavenging activity toward ABTS⢠and AAPH-derived radicals. BmT-2 protected fluorescein, DNA molecules, and human red blood cells (RBCs) from free radicals generated by the thermal decomposition of AAPH. The novel tryptophyllin was not toxic in cell viability tests, where it (up to 0.4 mg/mL) did not cause hemolysis of human RBCs and did not cause significant loss of cell viability, showing a CC50 > 1.5 mM for cytotoxic effects against SK-N-BE(2) neuroblastoma cells. BmT-2 prevented the arsenite-induced upregulation of Nrf2 in Neuro-2a neuroblasts and the phorbol myristate acetate-induced overgeneration of reactive oxygen species and reactive nitrogen species in SK-N-BE(2) neuroblastoma cells. Electronic structure calculations and full atomistic reactive molecular dynamics simulations revealed the relevant contribution of aromatic residues in BmT-2 to its antioxidant properties. Our study presents a novel peptide classified into the family of the tryptophyllins, which has been reported exclusively in amphibians. Despite the promising results on its antioxidant activity and low cytotoxicity, the mechanisms of action of BmT-2 still need to be further elucidated.
Assuntos
Bothrops , Venenos de Crotalídeos , Neuroblastoma , Fármacos Neuroprotetores , Animais , Humanos , Antioxidantes/farmacologia , Venenos de Crotalídeos/química , Venenos de Crotalídeos/farmacologia , Peptídeos , Venenos de SerpentesRESUMO
In addition to the morphophysiological changes experienced by amphibians during metamorphosis, they must also deal with a different set of environmental constraints when they shift from the water to the land. We found that Pithecopus azureus secretes a single peptide ([M + H]+ = 658.38 Da) at the developmental stage that precedes the onset of terrestrial behaviour. De novo peptide and cDNA sequencing revealed that the peptide, named PaT-2, is expressed in tandem and is a member of the tryptophyllins family. In silico studies allowed us to identify the position of reactive sites and infer possible antioxidant mechanisms of the compounds. Cell-based assays confirmed the predicted antioxidant activity in mammalian microglia and neuroblast cells. The potential neuroprotective effect of PaT-2 was further corroborated in FRET-based live cell imaging assays, where the peptide prevented lipopolysaccharide-induced ROS production and glutamate release in human microglia. In summary, PaT-2 is the first peptide expressed during the ontogeny of P. azureus, right before the metamorphosing froglet leaves the aquatic environment to occupy terrestrial habitats. The antioxidant activity of PaT-2, predicted by in silico analyses and confirmed by cell-based assays, might be relevant for the protection of the skin of P. azureus adults against increased O2 levels and UV exposure on land compared with aquatic environments.
Assuntos
Antioxidantes , Água , Animais , Antioxidantes/análise , Anuros/fisiologia , Humanos , Mamíferos , Peptídeos/análise , Pele , Água/análiseRESUMO
Snake venoms are important sources of bioactive molecules, including those with antiparasitic activity. Cathelicidins form a class of such molecules, which are produced by a variety of organisms. Batroxicidin (BatxC) is a cathelicidin found in the venom of the common lancehead (Bothrops atrox). In the present work, BatxC and two synthetic analogues, BatxC(C-2.15Phe) and BatxC(C-2.14Phe)des-Phe1, were assessed for their microbicidal activity. All three peptides showed a broad-spectrum activity on Gram-positive and -negative bacteria, as well as promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. Circular dichroism (CD) and nuclear magnetic resonance (NMR) data indicated that the three peptides changed their structure upon interaction with membranes. Biomimetic membrane model studies demonstrated that the peptides exert a permeabilization effect in prokaryotic membranes, leading to cell morphology distortion, which was confirmed by atomic force microscopy (AFM). The molecules considered in this work exhibited bactericidal and leishmanicidal activity at low concentrations, with the AFM data suggesting membrane pore formation as their mechanism of action. These peptides stand as valuable prototype drugs to be further investigated and eventually used to treat bacterial and protozoal infections.
Assuntos
Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Antiprotozoários/farmacologia , Bothrops , Venenos de Serpentes/química , Sequência de Aminoácidos , Animais , Antibacterianos/química , Peptídeos Antimicrobianos/química , Antiprotozoários/química , Catelicidinas , Células Cultivadas , Leishmania/efeitos dos fármacos , Macrófagos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , América do SulRESUMO
Pseudomonas aeruginosa and Staphylococcus aureus are two major pathogens involved in a large variety of infections. Their co-occurrence in the same site of infection has been frequently reported and is linked to enhanced virulence and difficulty of treatment. Herein, the antimicrobial and antibiofilm activities of an intragenic antimicrobial peptide (IAP), named Hs02, which was uncovered from the human unconventional myosin 1H protein, were investigated against several P. aeruginosa and S. aureus strains, including multidrug-resistant (MDR) isolates. The antibiofilm activity was evaluated on single- and dual-species biofilms of P. aeruginosa and S. aureus. Moreover, the effect of peptide Hs02 on the membrane fluidity of the strains was assessed through Laurdan generalized polarization (GP). Minimum inhibitory concentration (MIC) values of peptide Hs02 ranged from 2 to 16 µg/mL against all strains and MDR isolates. Though Hs02 was not able to hamper biofilm formation by some strains at sub-MIC values, it clearly affected 24 h preformed biofilms, especially by reducing the viability of the bacterial cells within the single- and dual-species biofilms, as shown by confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) images. Laurdan GP values showed that Hs02 induces membrane rigidification in both P. aeruginosa and S. aureus. Peptide Hs02 can potentially be a lead for further improvement as an antibiofilm agent.
Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Antibacterianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Meios de Cultura/química , Humanos , Lauratos/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimentoRESUMO
The existence of encrypted fragments with antimicrobial activity in human proteins has been thoroughly demonstrated in the literature. Recently, algorithms for the large-scale identification of these segments in whole proteomes were developed, and the pervasiveness of this phenomenon was stated. These algorithms typically mine encrypted cationic and amphiphilic segments of proteins, which, when synthesized as individual polypeptide sequences, exert antimicrobial activity by membrane disruption. In the present report, the human reference proteome was submitted to the software kamal for the uncovering of protein segments that correspond to putative intragenic antimicrobial peptides (IAPs). The assessment of the identity of these segments, frequency, functional classes of parent proteins, structural relevance, and evolutionary conservation of amino acid residues within their corresponding proteins was conducted in silico. Additionally, the antimicrobial and anticancer activity of six selected synthetic peptides was evaluated. Our results indicate that cationic and amphiphilic segments can be found in 2% of all human proteins, but are more common in transmembrane and peripheral membrane proteins. These segments are surface-exposed basic patches whose amino acid residues present similar conservation scores to other residues with similar solvent accessibility. Moreover, the antimicrobial and anticancer activity of the synthetic putative IAP sequences was irrespective to whether these are associated to membranes in the cellular setting. Our study discusses these findings in light of the current understanding of encrypted peptide sequences, offering some insights into the relevance of these segments to the organism in the context of their harboring proteins or as separate polypeptide sequences.
Assuntos
Anti-Infecciosos , Proteoma , Humanos , Proteoma/genética , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , AminoácidosRESUMO
The anticancer potential of some antimicrobial peptides has been reported. Hs02 is a recently characterized Intragenic Antimicrobial Peptide (IAP), which was able to exhibit potent antimicrobial and anti-inflammatory action. In this study, we evaluate for the first time the antineoplastic potential of the Hs02 IAP using cell lines representing the main types of leukemia as cancer models. Interestingly, this peptide decreased the viability of several leukemic cell lines, without compromising the viability of PBMCs in the same concentration. In the HL-60 line, treatment with Hs02 controlled cell division, leading to cell arrest in the G1 phase of the cell cycle. More importantly, HL-60 cells treated with Hs02 undergo cell death, with the formation of pores in the plasma membrane and the release of LDH. Accordingly, Hs02 treatment stimulated the expression of components involved in pyroptosis, such as NLRP1, CASP-1, GSDME, and IL-1ß. Taken together, our data characterize the antineoplastic potential of Hs02 and open an opportunity for both evaluating the peptide's antineoplastic potential in other cancer models and using this molecule as a template for new peptides with therapeutic potential against cancer.
RESUMO
This work investigated the peptide profile of skin secretion from Lithobates palmipes collected from the Brazilian Atlantic Forest. The secretion was submitted to reversed phase high-performance liquid chromatography (RP-HPLC) and the fractions were screened for antibacterial activity. RP-HPLC resulted in the separation of several peaks, among which 10 showed antibacterial activity and contained peptides of the ranatuerin, brevinin and temporin families. Fraction 6 was resubmitted to RP-HPLC and a novel peptide from temporin family (temporin-PMb) had its primary structure determined. Temporin-PMb and non-amidated temporin-PMb were synthesized, purified, and evaluated for antibacterial activity, hemolytic activity and cytotoxicity to keratinocytes and cancer cells. Temporin-PMb was active against Klebsiella pneumoniae, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa as well as against methicilin-resistant S. aureus (MRSA) and Acinetobacter baumannii. It was cytotoxic to human cervical adenocarcinoma cells (HeLa) and human mammary adenocarcinoma cells (MCF7) with IC50 of 32.4 and 24.1 µM, respectively. It was also toxic to human keratinocytes (HaCaT; IC50 of 25.0 µM) and showed hemolytic activity. The non-amidated form showed low hemolytic activity and lower HaCaT toxicity, but was only effective against E. coli, S. aureus MRSA, and A. baumanii. In conclusion, Atlantic Forest L. palmipes skin secretion contained different bioactive peptides, including a novel temporin with antibacterial effect and cytotoxicity towards human cancer cells. The amide group was responsible for the activities of the wild-type temporin-PMb. Peptide engineering studies are encouraged aiming at minimizing unwanted effects.
RESUMO
The potential emergence of zoonotic diseases has raised significant concerns, particularly in light of the recent pandemic, emphasizing the urgent need for scientific preparedness. The bioprospection and characterization of new molecules are strategically relevant to the research and development of innovative drugs for viral and bacterial treatment and disease management. Amphibian species possess a diverse array of compounds, including antimicrobial peptides. This study identified the first bioactive peptide from Salamandra salamandra in a transcriptome analysis. The synthetic peptide sequence, which belongs to the defensin family, was characterized through MALDI TOF/TOF mass spectrometry. Molecular docking assays hypothesized the interaction between the identified peptide and the active binding site of the spike WT RBD/hACE2 complex. Although additional studies are required, the preliminary evaluation of the antiviral potential of synthetic SS-I was conducted through an in vitro cell-based SARS-CoV-2 infection assay. Additionally, the cytotoxic and hemolytic effects of the synthesized peptide were assessed. These preliminary findings highlighted the potential of SS-I as a chemical scaffold for drug development against COVID-19, hindering viral infection. The peptide demonstrated hemolytic activity while not exhibiting cytotoxicity at the antiviral concentration.
RESUMO
Antimicrobial peptides (AMPs) from the dermaseptin and phylloseptin families were isolated from the skin secretion of Phyllomedusa nordestina, a recently described amphibian species from Northeastern Brazil. One dermaseptin and three phylloseptins were chosen for solid phase peptide synthesis. The antiprotozoal and antimicrobial activities of the synthetic peptides were determined, as well as their cytotoxicity in mouse peritoneal cells. AMPs are being considered as frameworks for the development of novel drugs inspired by their mechanism of action.
Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Pele/metabolismo , Proteínas de Anfíbios/química , Proteínas de Anfíbios/metabolismo , Proteínas de Anfíbios/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antiprotozoários/química , Antiprotozoários/farmacologia , Anuros , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Amphibian secretions have been extensively investigated for the production of bioactive molecules. Salamandrin-I is an antioxidant peptide, isolated from the skin secretion of the fire salamander, that has induced no toxicity in microglia or erythrocytes. Importantly, the administration of antioxidants may constitute an adequate therapeutic approach to cancer treatment. Here, with the purpose of better characterizing the therapeutic potential of salamandrin-I, we investigated whether this antioxidant peptide also exerts anticancer activity, using the human leukemia cell line HL-60 as a cancer model. Salamandrin-I treatment induced a significant reduction in HL-60 proliferation, which was accompanied by cell cycle arrest. Furthermore, the peptide-induced cell death showed a significant increase in the LDH release in HL-60 cells. The cellular toxicity exerted by salamandrin-I is possibly related to pyroptosis, since the HL-60 cells showed loss of mitochondrial membrane potential and hyperexpression of inflammasome components following the peptide treatment. This is the first demonstration of the anticancer potential of the salamandrin-I peptide. Such results are important, as they offer relevant insights into the field of cancer therapy and allow the design of future bioactive molecules using salamandrin-I as a template.
RESUMO
Amphibians have a great diversity of bioactive peptides in their skin. The cDNA prepro-peptide sequencing allowed the identification of five novel mature peptides expressed in the skin of Boana pulchella, four with similar sequences to hylin peptides having a cationic amphipathic-helical structure. Whole mature peptides and some of their fragments were chemically-synthesized and tested against Gram-positive and Gram-negative bacterial strains. The mature peptide hylin-Pul3 was the most active, with a MIC= 14 µM against Staphylococcus aureus. Circular dichroism assays indicated that peptides are mostly unstructured in buffer solutions. Still, adding large unilamellar vesicles composed of dimyristoyl phosphatidylcholine and dimyristoylphosphatidylglycerol increased the α-helix content of novel hylins. These results demonstrate the strong influence of the environment on peptide conformation and highlight its significance while addressing the pharmacology of peptides and their biological function in frogs.
Assuntos
Anuros , Peptídeos , Animais , Sequência de Aminoácidos , Peptídeos/farmacologia , Peptídeos/química , Lipídeos , Dicroísmo CircularRESUMO
BACKGROUND: Some cationic and amphiphilic α-helical segments of proteins adsorb to prokaryotic membranes when synthesized as individual polypeptide sequences, resulting in broad and potent antimicrobial activity. However, amphiphilicity, a determinant physicochemical property for peptide-membrane interactions, can also be observed in some ß-sheets. METHODS: The software Kamal was used to scan the human reference proteome for short (7-11 amino acid residues) cationic and amphiphilic protein segments with the characteristic periodicity of ß-sheets. Some of the uncovered peptides were chemically synthesized, and antimicrobial assays were conducted. Biophysical techniques were used to probe the molecular interaction of one peptide with phospholipid vesicles, lipopolysaccharides (LPS) and the bacterium Escherichia coli. RESULTS: Thousands of compatible segments were found in human proteins, five were synthesized, and three presented antimicrobial activity in the micromolar range. Hs10, a nonapeptide fragment of the Complement C3 protein, could inhibit only the growth of tested Gram-negative microorganisms, presenting also little cytotoxicity to human fibroblasts. Hs10 interacted with LPS while transitioning from an unstructured segment to a ß-sheet and increased the hydrodynamic radius of LPS particles. This peptide also promoted morphological alterations in E. coli cells. CONCLUSIONS: Data presented herein introduce yet another molecular template to probe proteins in search for encrypted membrane-active segments and demonstrates that, using this approach, short peptides with low cytotoxicity and high selectivity to prokaryotic cells might be obtained. GENERAL SIGNIFICANCE: This work widens the biotechnological potential of the human proteome as a source of antimicrobial peptides with application in human health.
Assuntos
Anti-Infecciosos , Escherichia coli , Humanos , Escherichia coli/metabolismo , Peptídeos Antimicrobianos , Lipopolissacarídeos/farmacologia , Proteoma , Bactérias Gram-Negativas/metabolismo , Peptídeos/químicaRESUMO
The number of multidrug-resistant pathogenic microorganisms has been growing in recent years, most of which is due to the inappropriate use of the commercial antibiotics that are currently available. The dissemination of antimicrobial resistance represents a serious global public health problem. Thus, it is necessary to search for and develop new drugs that can act as antimicrobial agents. Antimicrobial peptides are a promising alternative for the development of new therapeutic drugs. Anurans' skin glands are a rich source of broad-spectrum antimicrobial compounds and hylids, a large and diverse family of tree frogs, are known as an important source of antimicrobial peptides. In the present study, two novel antimicrobial peptides, named Raniseptins-3 and -6, were isolated from Boana raniceps skin secretion and their structural and biological properties were evaluated. Raniseptins-3 and -6 are cationic, rich in hydrophobic residues, and adopt an α-helix conformation in the presence of SDS (35 mM). Both peptides are active against Gram-negative bacteria and Gram-positive pathogens, with low hemolytic activity at therapeutic concentrations. No activity was observed for yeasts, but the peptides are highly cytotoxic against B16F10 murine melanoma cells and NIH3T3 mouse fibroblast cells. None of the tested compounds showed improvement trends in the MTT and LDH parameters of MHV-3 infected cells at the concentrations tested.
Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Animais , Camundongos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Células NIH 3T3 , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anuros , Antibacterianos/farmacologia , Antibacterianos/análise , Testes de Sensibilidade Microbiana , Pele/químicaRESUMO
Amphibians secrete a complex array of molecules that shape their interactions with coinhabiting microorganisms and macroscopic predators. Glycans are a rapidly evolving and complex class of biomolecules implicated in intrinsic and extrinsic recognition events. Despite the numerous studies aiming at the biochemical characterization of anuran skin secretions, little is known about protein-linked oligosaccharides, their synthesis pathways, and their homing secreted glycoproteins. In the present report, LC-MS/MS was used to investigate the diversity of N- and O-linked oligosaccharides in the skin secretion of two South American frogs, Pithecopus azureus and Boana raniceps. Additionally, the enzymes responsible for glycan synthesis pathways were evaluated based on their skin tissue transcriptome. Our analyses allowed the annotation of various N- and O-glycan structures commonly found in vertebrate proteins. Paucimannosidic glycans were abundant in the skin secretion of both amphibians; however, hybrid and complex N-glycan structures were detected only in B. raniceps. A good correlation between the structures discovered in glycomic analyses and transcripts encoding enzymes necessary for their synthesis was obtained. Some transcripts such as those of MAN1A2, FUT8, and ST6GALNAC were found solely in B. raniceps. Finally, secreted N- and O- linked glycoproteins were predicted from the transcriptomic data, indicating that proteases and protease inhibitors are putative sources of the glycans described herein. Overall, our results show the presence of oligosaccharides in amphibians skin secretions and suggest that their diversity is species-specific, paving the way for novel perspectives involving amphibian evolution and ecology.
Assuntos
Glicoproteínas , Espectrometria de Massas em Tandem , Animais , Anuros/metabolismo , Cromatografia Líquida , Glicoproteínas/metabolismo , Glicosilação , Oligossacarídeos/química , Polissacarídeos/metabolismo , Espectrometria de Massas em Tandem/métodosRESUMO
Metabolic diseases are increasing at staggering rates globally. The peroxisome proliferator-activated receptors (PPARα/γ/δ) are fatty acid sensors that help mitigate imbalances between energy uptake and utilization. Herein, we report compounds derived from phenolic lipids present in cashew nut shell liquid (CNSL), an abundant waste byproduct, in an effort to create effective, accessible, and sustainable drugs. Derivatives of anacardic acid and cardanol were tested for PPAR activity in HEK293 cell co-transfection assays, primary hepatocytes, and 3T3-L1 adipocytes. In vivo studies using PPAR-expressing zebrafish embryos identified CNSL derivatives with varying tissue-specific activities. LDT409 (23) is an analogue of cardanol with partial agonist activity for PPARα and PPARγ. Pharmacokinetic profiling showed that 23 is orally bioavailable with a half-life of 4 h in mice. CNSL derivatives represent a sustainable source of selective PPAR modulators with balanced intermediate affinities (EC50 â¼ 100 nM to 10 µM) that provide distinct and favorable gene activation profiles for the treatment of diabetes and obesity.
Assuntos
Ácidos Anacárdicos/farmacologia , Anacardium/química , Nozes/química , PPAR alfa/agonistas , PPAR delta/agonistas , PPAR gama/agonistas , Células 3T3-L1 , Ácidos Anacárdicos/síntese química , Ácidos Anacárdicos/metabolismo , Ácidos Anacárdicos/farmacocinética , Animais , Desenho de Fármacos , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , PPAR alfa/química , PPAR delta/química , PPAR gama/química , Domínios Proteicos , Peixe-ZebraRESUMO
Colorectal cancer (CRC) ranks second as the leading cause of cancer-related deaths worldwide. N-glycosylation is one of the most common posttranslational protein modifications. Therefore, we studied the total serum N-glycome (TSNG) of 13 colon cancer patients compared to healthy controls using MALDI-TOF/MS and LC-MS. N-glycosylation of cancer tumor samples from the same cohort were further quantified using a similar methodology. In total, 23 N-glycan compositions were down-regulated in the serum of colon cancer patients, mostly galactosylated forms whilst the mannose-rich HexNAc2Hex7, the fucosylated bi-antennary glycan HexNAc4Hex5Fuc1NeuAc2, and the tetra-antennary HexNAc6Hex7NeuAc3 were up-regulated in serum. Hierarchical clustering analysis of TSNG correctly singled out 85% of the patients from controls. Albeit heterogenous, N-glycosylation of tumor samples showed overrepresented oligomannosidic, bi-antennary hypogalactosylated, and branched compositions related to normal colonic tissue, in both MALDI-TOF/MS and LC-MS analysis. Moreover, compositions found upregulated in tumor tissue were mostly uncorrelated to compositions in serum of cancer patients. Mass spectrometry-based N-glycan profiling in serum shows potential in the discrimination of patients from healthy controls. However, the compositions profile in serum showed no parallel with N-glycans in tumor microenvironment, which suggests a different origin of compositions found in serum of cancer patients.
RESUMO
As part of our efforts to develop sustainable drugs for Alzheimer's disease (AD), we have been focusing on the inexpensive and largely available cashew nut shell liquid (CNSL) as a starting material for the identification of new acetylcholinesterase (AChE) inhibitors. Herein, we decided to investigate whether cardanol, a phenolic CNSL component, could serve as a scaffold for improved compounds with concomitant anti-amyloid and antioxidant activities. Ten new derivatives, carrying the intact phenolic function and an aminomethyl functionality, were synthesized and first tested for their inhibitory potencies towards AChE and butyrylcholinesterase (BChE). 5 and 11 were found to inhibit human BChE at a single-digit micromolar concentration. Transmission electron microscopy revealed the potential of five derivatives to modulate Aß aggregation, including 5 and 11. In HORAC assays, 5 and 11 performed similarly to standard antioxidant ferulic acid as hydroxyl scavenging agents. Furthermore, in in vitro studies in neuronal cell cultures, 5 and 11 were found to effectively inhibit reactive oxygen species production at a 10 µM concentration. They also showed a favorable initial ADME/Tox profile. Overall, these results suggest that CNSL is a promising raw material for the development of potential disease-modifying treatments for AD.