Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Exp Brain Res ; 239(6): 1963-1974, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33885919

RESUMO

Dopamine seems to mediate fear conditioning through its action on D2 receptors in the mesolimbic pathway. Systemic and local injections of dopaminergic agents showed that D2 receptors are preferentially involved in the expression, rather than in the acquisition, of conditioned fear. To further examine this issue, we evaluated the effects of systemic administration of the dopamine D2-like receptor antagonists sulpiride and haloperidol on the expression and extinction of contextual and cued conditioned fear in rats. Rats were trained to a context-CS or a light-CS using footshocks as unconditioned stimuli. After 24 h, rats received injections of sulpiride or haloperidol and were exposed to the context-CS or light-CS for evaluation of freezing expression (test session). After another 24 h, rats were re-exposed to the context-CS or light-CS, to evaluate the extinction recall (retest session). Motor performance was assessed with the open-field and catalepsy tests. Sulpiride, but not haloperidol, significantly reduced the expression of contextual and cued conditioned fear without affecting extinction recall. In contrast, haloperidol, but not sulpiride, had cataleptic and motor-impairing effects. The results reinforce the importance of D2 receptors in fear conditioning and suggest that dopaminergic mechanisms mediated by D2 receptors are mainly involved in the expression rather than in the extinction of conditioned freezing.


Assuntos
Condicionamento Clássico , Extinção Psicológica , Medo , Receptores de Dopamina D2 , Animais , Dopaminérgicos , Ratos , Ratos Wistar
2.
J Pathol ; 249(1): 102-113, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31038736

RESUMO

Serotonin (5-HT) signaling pathways are thought to be involved in colorectal tumorigenesis (CRT), but the role of 5-HT synthesis in the early steps of this process is presently unknown. In this study, we used carcinogen treatment in the tryptophan hydroxylase 1 knockout (Tph1KO) and transgenic (Tph1fl/fl VillinCre ) mouse models defective in 5-HT synthesis to investigate the early mutagenic events associated with CRT. Our observations of the colonic crypt post-treatment followed a timeline designed to understand how disruption of 5-HT synthesis affects the initial steps leading to CRT. We found Tph1KO mice had decreased development of both allograft tumors and colitis-related CRT. Interestingly, carcinogenic exposure alone induced multiple colon tumors and increased cyclooxygenase-2 (Ptgs2) expression in Tph1KO mice. Deletion of interleukin 6 (Il6) in Tph1KO mice confirmed that inflammation was a part of the process. 5-HT deficiency increased colonic DNA damage but inhibited genetic repair of specific carcinogen-related damage, leading to CRT-related inflammatory reactions and dysplasia. To validate a secondary effect of 5-HT deficiency on another DNA repair pathway, we exposed Tph1KO mice to ionizing radiation and found an increase in DNA damage associated with reduced levels of ataxia telangiectasia and Rad3 related (Atr) gene expression in colonocytes. Restoring 5-HT levels with 5-hydroxytryptophan treatment decreased levels of DNA damage and increased Atr expression. Analysis of Tph1fl/fl VillinCre mice with intestine-specific loss of 5-HT synthesis confirmed that DNA repair was tissue specific. In this study, we report a novel protective role for 5-HT synthesis that promotes DNA repair activity during the early stages of colorectal carcinogenesis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Transformação Celular Neoplásica/metabolismo , Colo/metabolismo , Neoplasias Colorretais/prevenção & controle , Dano ao DNA , Reparo do DNA , Lesões Pré-Cancerosas/prevenção & controle , Serotonina/biossíntese , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Interleucina-6/deficiência , Interleucina-6/genética , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Transdução de Sinais , Fatores de Tempo , Triptofano Hidroxilase/deficiência , Triptofano Hidroxilase/genética
3.
Behav Pharmacol ; 30(2 and 3-Spec Issue): 229-238, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30632994

RESUMO

Catalepsy - an immobile state in which individuals fail to change imposed postures - can be induced by haloperidol. In rats, the pattern of haloperidol-induced catalepsy is very similar to that observed in Parkinson's disease (PD). As some PD symptoms seem to depend on the patient's emotional state, and as anxiety disorders are common in PD, it is possible that the central mechanisms regulating emotional and cataleptic states interplay. Previously, we showed that haloperidol impaired contextual-induced alarm calls in rats, without affecting footshock-evoked calls. Here, we evaluated the influence of distinct aversive stimulations on the haloperidol-induced catalepsy. First, male Wistar rats were subjected to catalepsy tests to establish a baseline state after haloperidol or saline administration. Next, distinct cohorts were exposed to open-field; elevated plus-maze; open-arm confinement; inescapable footshocks; contextual conditioned fear; or corticosterone administration. Subsequently, catalepsy tests were performed again. Haloperidol-induced catalepsy was verified in all drug-treated animals. Exposure to open-field, elevated plus-maze, open-arm confinement, footshocks, or administration of corticosterone had no significant effect on haloperidol-induced catalepsy. Contextual conditioned fear, which is supposed to promote a more intense fear, increased catalepsy over time. Our findings suggest that only specific defensive circuitries modulate the nigrostriatal system mediating the haloperidol-induced cataleptic state.


Assuntos
Afeto/efeitos dos fármacos , Catalepsia/fisiopatologia , Medo/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Modelos Animais de Doenças , Antagonistas de Dopamina/farmacologia , Haloperidol/farmacologia , Masculino , Doença de Parkinson/metabolismo , Ratos , Ratos Wistar
4.
Exp Brain Res ; 235(2): 429-436, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27766352

RESUMO

Considering the complexity of aversive information processing and defensive response expression, a combined action of stress modulators may be required for an optimal performance during threatening situations. Dopamine is now recognized as one of the most active modulators underlying states of fear and anxiety. On the other hand, activation of hypothalamic-pituitary-adrenocortical (HPA) axis, which leads to the release of corticosterone in rodents, has been considered a key part of the stress response. The current study is an extension of prior work investigating modulatory effects of dopamine and corticosterone on conditioned fear expression. We have showed that corticosterone, acting through mineralocorticoid receptors in the ventral tegmental area (VTA), upregulates dopaminergic system in the basolateral amygdala (BLA), enabling the expression of conditioned freezing response. The novel question addressed here is whether VTA-BLA dopaminergic signaling is necessary for increases in corticosterone during conditioned fear expression. Using site-specific treatment with D2-like agonist quinpirole (VTA) and D2-like antagonist sulpiride (BLA), we evaluated freezing and plasma corticosterone in rats exposed to a light used as aversive conditioned stimulus (CS). Intra-VTA quinpirole and intra-BLA sulpiride significantly decreased freezing expression in the conditioned fear test, but this anxiolytic-like effect of the dopaminergic drugs was not associated with changes in plasma corticosterone concentrations. Altogether, data suggest that interferences with the ability of the CS to activate the dopaminergic VTA-BLA pathway reduce the expression of freezing, but activation of the HPA axis seems to occur upstream of the recruitment of dopaminergic mechanisms in conditioned fear states.


Assuntos
Condicionamento Psicológico/fisiologia , Medo/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Receptores de Dopamina D2/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Corticosterona/metabolismo , Dopamina/farmacologia , Dopaminérgicos/farmacologia , Medo/efeitos dos fármacos , Reação de Congelamento Cataléptica/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Microinjeções , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/fisiologia , Ratos , Ratos Wistar , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
5.
Cereb Cortex ; 26(6): 2639-49, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-25976757

RESUMO

The aim of the present study was to investigate the role of glucocorticoids in medial prefrontal cortex (mPFC) activity and the expression of contextual conditioned fear (freezing). Rats were pretreated with vehicle or metyrapone, a corticosterone synthesis blocker, and exposed to a context previously paired with footshocks. Freezing and Fos-protein expression in different mPFC regions were assessed. Exposure to the aversive context led to increased freezing and Fos expression in the prelimbic (PrL), anterior cingulate areas 1 and 2 (Cg1/Cg2). Pretreatment with metyrapone decreased freezing and Fos expression in these areas. Administration of spironolactone, an MR antagonist, in the PrL before the test decreased freezing. Pretreatment with RU38486, a glucocorticoid receptor (GR) antagonist, reduced this effect of spironolactone, suggesting that the effects of this MR antagonist may be attributable to a redirection of endogenous corticosterone actions to GRs. Consistent with this result, the decrease in freezing that was induced by intra-PrL injections of corticosterone was attenuated by pretreatment with RU38486 but not spironolactone. These findings indicate that corticosterone release during aversive conditioning influences mPFC activity and the retrieval of conditioned fear memory indicating the importance of balance between MR:GR-mediated effects in this brain region in this process.


Assuntos
Condicionamento Psicológico/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Condicionamento Psicológico/efeitos dos fármacos , Corticosterona/administração & dosagem , Corticosterona/metabolismo , Inibidores Enzimáticos/farmacologia , Medo/efeitos dos fármacos , Reação de Congelamento Cataléptica/efeitos dos fármacos , Reação de Congelamento Cataléptica/fisiologia , Antagonistas de Hormônios/farmacologia , Masculino , Metirapona/farmacologia , Mifepristona/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Mineralocorticoides/metabolismo , Espironolactona/farmacologia
6.
Horm Behav ; 63(5): 791-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23603480

RESUMO

The periaqueductal gray (PAG) columns have been implicated in controlling stress responses through corticotropin-releasing factor (CRF), which is a neuropeptide with a prominent role in the etiology of fear- and anxiety-related psychopathologies. Several studies have investigated the involvement of dorsal PAG (dPAG) CRF mechanisms in models of unconditioned fear. However, less is known about the role of this neurotransmission in the expression of conditioned fear memories in the dPAG and ventrolateral PAG (vlPAG) columns. We assessed the effects of ovine CRF (oCRF 0.25 and 1.0 µg/0.2 µL) locally administered into the dPAG and vlPAG on behavioral (fear-potentiated startle and freezing) and autonomic (arterial pressure and heart rate) responses in rats subjected to contextual fear conditioning. The lower dose injected into the columns promoted proaversive effects, enhanced contextual freezing, increased the blood pressure and heart rate and decreased tail temperature. The lower dose of oCRF into the vlPAG, but not into the dPAG, produced a pronounced enhancement of the fear-potentiated startle response. The results imply that the PAG is a heterogeneous structure that is involved in the coordination of distinct behaviors and autonomic control, suggest PAG involvement in the expression of contextual fear memory as well as implicate the CRF as an important modulator of the neural substrates of fear in the PAG.


Assuntos
Comportamento Animal/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Hormônio Liberador da Corticotropina/farmacologia , Medo/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Reação de Congelamento Cataléptica/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Reflexo de Sobressalto/efeitos dos fármacos
7.
Behav Pharmacol ; 24(4): 264-74, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23751519

RESUMO

Although dopaminergic systems are more commonly associated with the reinforcing effects of various stimuli, numerous reports have demonstrated a relationship between changes in dopaminergic transmission and aversive situations. In the present study, we examined the involvement of D1-like and D2-like receptors in the expression of conditioned freezing using the context as the conditioned stimulus. Intraperitoneal injections of the D1 agonist SKF38393 or the D1 antagonist SCH23390 did not change the conditioned freezing in rats subjected to the contextual fear paradigm. In contrast, intraperitoneal injections of the D2 agonist quinpirole and the D2 antagonist sulpiride caused a significant dose-dependent reduction in the expression of contextual conditioned freezing. As these data may reflect that the systemic manipulations acted on dopaminergic receptors in different brain areas, the effects of administration of quinpirole and sulpiride into the ventral tegmental area (VTA) and the basolateral amygdala complex (BLA) on the expression of contextual conditioned freezing were also evaluated. Intra-VTA quinpirole and intra-BLA sulpiride injections reduced the conditioned freezing response; intra-VTA sulpiride and intra-BLA quinpirole injections had no significant effects. These data suggest that D2-like receptors, but not D1-like receptors, play an important role in the expression of contextual conditioned freezing. Quinpirole may act at D2 presynaptic receptors located in the VTA, decreasing dopamine levels in the terminal fields of the mesolimbic pathway. The effects of sulpiride, in contrast, appear to be triggered by an action on postsynaptic dopaminergic receptors located in the BLA. However, it cannot be totally excluded that the injected solutions did not also affect neighboring amygdalar regions. Together with previous findings, the present data suggest the need to consider dopaminergic mechanisms in the mesolimbic circuit as novel targets for the pharmacological treatment of fear-related disorders, especially post-traumatic stress disorder.


Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Psicológico/fisiologia , Medo , Receptores de Dopamina D2/fisiologia , Área Tegmentar Ventral/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Condicionamento Psicológico/efeitos dos fármacos , Dopaminérgicos/farmacologia , Eletrochoque/efeitos adversos , Comportamento Exploratório/fisiologia , Medo/efeitos dos fármacos , Reação de Congelamento Cataléptica/efeitos dos fármacos , Masculino , Microinjeções , Ratos , Ratos Wistar , Área Tegmentar Ventral/efeitos dos fármacos
8.
Stress ; 15(3): 318-28, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21992055

RESUMO

The extent to which the hypothalamic-pituitary-adrenal axis is activated by short-term and long-term consequences of stress is still open to investigation. This study aimed to determine (i) the correlation between plasma corticosterone and exploratory behavior exhibited by rats subjected to the elevated plus maze (EPM) following different periods of social isolation, (ii) the effects of the corticosterone synthesis blocker, metyrapone, on the behavioral consequences of isolation, and (iii) whether corticosterone produces its effects through an action on the anterior cingulate cortex, area 1 (Cg1). Rats were subjected to 30-min, 2-h, 24-h, or 7-day isolation periods before EPM exposure and plasma corticosterone assessments. Isolation for longer periods of time produced greater anxiogenic-like effects on the EPM. However, stretched attend posture (SAP) and plasma corticosterone concentrations were increased significantly after 30 min of isolation. Among all of the behavioral categories measured in the EPM, only SAP positively correlated with plasma corticosterone. Metyrapone injected prior to the 24 h isolation period reversed the anxiogenic effects of isolation. Moreover, corticosterone injected into the Cg1 produced a selective increase in SAP. These findings indicate that risk assessment behavior induced by the action of corticosterone on Cg1 neurons initiates a cascade of defensive responses during exposure to stressors.


Assuntos
Corticosterona/fisiologia , Giro do Cíngulo/fisiologia , Assunção de Riscos , Isolamento Social , Análise de Variância , Animais , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Corticosterona/antagonistas & inibidores , Corticosterona/farmacologia , Comportamento Exploratório/fisiologia , Antagonistas de Hormônios/farmacologia , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Metirapona/farmacologia , Microinjeções , Sistema Hipófise-Suprarrenal/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Wistar
9.
Front Psychiatry ; 13: 860447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432026

RESUMO

Fear and anxiety are generally assessed as responses of prey to high or low levels of threatening environments, fear-conditioned or unconditioned stimuli, or the intensity and distance between predator and prey. Depending on whether a threat is close to or distant from the individual, the individual exhibits specific behaviors, such as being quiet (freezing in animals) if the threat is distant or fleeing if the threat is close. In a seminal paper in 2007, Dean Mobbs developed an active prevention virtual reality paradigm (VRP) to study a threat's spatial imminence using finger shocks. In the present study, we used a modified VRP with a distinctive feature, namely a dynamic threat-of-loud noise paradigm. The results showed a significant reduction in the number of times the subjects were captured in the high predator phase (85 dB) vs. control phases, suggesting that the participants were motivated to avoid the high predator. Concomitant with avoidance behavior, a decrease in respiratory rate and an increase in heart rate characterized the defense reaction. These results demonstrate behavioral and autonomic effects of threat intensity in volunteers during a VRP, revealing a profile of defense reaction that reflects the individual emotional susceptibility to the development of anxiety.

10.
J Psychopharmacol ; 36(12): 1371-1383, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36239039

RESUMO

RATIONALE: Cannabidiol (CBD), the major non-psychoactive constituent of cannabis, has therapeutic potential for the treatment of anxiety. Most preclinical studies investigate only acute effects of CBD and only in males, yet the drug is most likely to be used over a sustained period in clinical practice. OBJECTIVES: The objectives of this study were to investigate the anxiolytic-like effect of CBD in female rats compared to males and to determine whether the responsiveness of females was influenced by the stage of the estrous cycle. METHODS: We carried out experiments to compare the effect of CBD in male and female rats in the elevated plus maze (EPM) in response to acute and short-term (4 days) administration through a complete cycle in females. RESULTS: Male and female rats behaved in a similar manner in the EPM, but females in the late diestrus (LD) phase exhibited more anxiety-like behavior than at other stages, the difference reaching statistical significance compared to proestrus stages. CBD produced anxiolytic-like effects in both sexes, but female rats were responsive only in LD and 10-fold lower dose than males. After sub-chronic (4 days) treatment, responsiveness to CBD was maintained in females in LD, but females in proestrus remained unresponsive to CBD treatment. CONCLUSIONS: We suggest that there are sex differences in the anxiolytic-like effects of CBD in rats that reflect different underlying mechanisms: based on literature data, gonadal hormone status linked to GABAA receptor expression in females, and 5-HT1A receptor activation in males.


Assuntos
Ansiolíticos , Canabidiol , Feminino , Masculino , Ratos , Animais , Ansiolíticos/farmacologia , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Teste de Labirinto em Cruz Elevado , Caracteres Sexuais , Ratos Wistar , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Receptores de GABA-A
11.
Int J Neuropsychopharmacol ; 13(8): 1079-88, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19941697

RESUMO

Chronic administration of antidepressants such as fluoxetine and imipramine increases the responsiveness of 5-HT(1A) receptors in dorsal periaqueductal grey matter (DPAG), a midbrain area consistently implicated in the pathogenesis of panic disorder. This effect has been related to the clinically relevant anti-panic action of these drugs. In this study we determined whether long-term administration of fluoxetine also affects 5-HT efflux in DPAG. As a comparison, the effect of chronic treatment with the anxiolytic 5-HT(1A) receptor agonist buspirone on DPAG 5-HT levels was assessed. We also investigated whether the inhibitory effect of chronic fluoxetine on escape behaviour in the rat elevated T-maze, considered as a panicolytic-like effect, is counteracted by intra-DPAG injection of the 5-HT(1A) receptor antagonist WAY 100635. Male Wistar rats were treated (1 or 21 d, i.p.) with fluoxetine, buspirone or vehicle, once daily. After treatment, 5-HT in DPAG was measured by in-vivo microdialysis coupled to HPLC. In another study, rats treated (21 d, i.p.) with either fluoxetine or vehicle also received intra-DPAG injection of WAY 100635 or saline 10 min before being tested in the elevated T-maze. Chronic, but not acute, administration of fluoxetine significantly raised extracellular levels of 5-HT in DPAG. Long-term treatment with buspirone was ineffective. In the elevated T-maze, intra-DPAG injection of WAY 100635 fully blocked the anti-escape effect of chronic administration of fluoxetine. Therefore, chronic fluoxetine facilitates 5-HT(1A)-mediated neurotransmission within DPAG and this effect accounts for the panicolytic-like effect of this antidepressant in the elevated T-maze.


Assuntos
Ansiolíticos/farmacologia , Fluoxetina/farmacologia , Transtorno de Pânico , Substância Cinzenta Periaquedutal/fisiologia , Receptor 5-HT1A de Serotonina/fisiologia , Transmissão Sináptica/fisiologia , Animais , Ansiolíticos/uso terapêutico , Fluoxetina/uso terapêutico , Masculino , Transtorno de Pânico/tratamento farmacológico , Transtorno de Pânico/metabolismo , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Ratos , Ratos Wistar , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos
12.
PLoS One ; 15(7): e0236039, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32702030

RESUMO

BACKGROUND: The bidirectional selection of high and low anxiety-like behavior is a valuable tool for understanding the neurocircuits that are responsible for anxiety disorders. Our group developed two breeding lines of rats, known as Carioca High- and Low-conditioned Freezing (CHF and CLF), based on defensive freezing in the contextual fear conditioning paradigm. A random selected line was employed as a control (CTL) comparison group for both CHF and CLF lines of animals. The present study performed Fos immunochemistry to investigate changes in neural activity in different brain structures among CHF and CLF rats when they were exposed to contextual cues that were previously associated with footshock. RESULTS: The study indicated that CHF rats expressed high Fos expression in the locus coeruleus, periventricular nucleus of the hypothalamus (PVN), and lateral portion of the septal area and low Fos expression in the medial portion of the septal area, dentate gyrus, and prelimbic cortex (PL) compared to CTL animals. CLF rats exhibited a decrease in Fos expression in the PVN, PL, and basolateral nucleus of the amygdala and increase in the cingulate and perirhinal cortices compared to CTL animals. CONCLUSIONS: Both CHF and CLF rats displayed Fos expression changes key regions of the anxiety brain circuitry. The two bidirectional lines exhibit different pattern of neural activation and inhibition with opposing influences on the PVN, the main structure involved in regulating the hypothalamic-pituitary-adrenal neuroendocrine responses observed in anxiety disorders.


Assuntos
Encéfalo/metabolismo , Condicionamento Psicológico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/psicologia , Masculino , Ratos
13.
Prog Neuropsychopharmacol Biol Psychiatry ; 33(2): 334-44, 2009 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19150477

RESUMO

Anxiety is an affective symptom common to withdrawal from acute or chronic opiate treatment. Although the potentiation of the acoustic startle reflex has been proposed as an index of increased anxiety, there are variable effects of the opiate withdrawal on the startle reflex in chronic dependence models. On the other hand, withdrawal from acute morphine treatment consistently potentiates the acoustic startle reflex, a response that seems to be mediated by the central nucleus of the amygdala (CeA). However, the underlying neurochemical mechanisms have not been elucidated yet. In the present study, we firstly made a comparison between the effects of the withdrawal from both acute and chronic treatments with morphine on the motor activity and the anxiety-like behavior of rats tested in two experimental models, the acoustic startle reflex and the open-field tests. Our second objective was to investigate the role of GABAergic and opioid mechanisms of the CeA in the modulation of the withdrawal-potentiated startle as a measure of anxiety induced by morphine withdrawal. For the production of chronic dependence, rats received morphine injections (10 mg/kg; s.c.) twice daily during 10 days. Forty-eight hours after the interruption of this treatment, independent groups were probed in the startle reflex and open-field tests. For the acute dependence model, groups of rats were tested in the open field and startle tests under control conditions and under withdrawal from a single injection of morphine (10 mg/kg; s.c.) precipitated by naltrexone injections (0.1 mg/kg; s.c.). The results obtained showed that withdrawal from chronic and acute morphine treatments produced anxiety-like behavior in the open field test, although the anxiogenic-like effects could not be dissociated from the motor effects in the acute dependence model. On the other hand, only the withdrawal from acute morphine treatment significantly potentiated the startle response. Next, we examined the effects of intra-CeA microinjections of muscimol-a GABA(A) receptors agonist-and DAMGO-a mu-opioid receptors agonist-on the potentiated startle induced by acute morphine withdrawal. The results obtained showed that intra-CeA injections of muscimol (1 nmol) and DAMGO (0.5 and 1 nmol) significantly inhibited this response. These findings suggest that the acute dependence model is more suitable to study the aversive effects of morphine withdrawal on the acoustic startle response than the chronic opiate dependence model. Besides, mechanisms mediated by mu- and GABA(A)-receptors in the CeA appear to exert an inhibitory influence on the anxiety-like behavior induced by withdrawal from acute morphine treatment.


Assuntos
Tonsila do Cerebelo/fisiologia , Morfina/farmacologia , Entorpecentes/farmacologia , Receptores Opioides/fisiologia , Reflexo de Sobressalto/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/psicologia , Ácido gama-Aminobutírico/fisiologia , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacologia , Animais , Ala(2)-MePhe(4)-Gly(5)-Encefalina/administração & dosagem , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Agonistas GABAérgicos/administração & dosagem , Agonistas GABAérgicos/farmacologia , Agonistas de Receptores de GABA-A , Microinjeções , Morfina/administração & dosagem , Atividade Motora/efeitos dos fármacos , Muscimol/administração & dosagem , Muscimol/farmacologia , Entorpecentes/administração & dosagem , Ratos , Ratos Wistar , Receptores Opioides mu/agonistas
14.
Pharmacol Biochem Behav ; 92(2): 351-6, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19353757

RESUMO

In recent years, studies in behavioral pharmacology have shown the involvement of dopaminergic mechanisms in avoidance behavior as assessed by the two-way active avoidance test (CAR). Changes in dopaminergic transmission also occur in response to particularly threatening challenges. However, studies on the effects of benzodiazepine (BZD) drugs in this test are still unclear. Given the interplay of dopamine and other neurotransmitters in the neurobiology of anxiety and schizophrenia the aim of this work was to evaluate the effects of systemic administration of midazolam, the dopaminergic agonist apomorphine, and the D2 receptor antagonist sulpiride using the CAR, a test that shows good sensitivity to typical neuroleptic drugs. Whereas midazolam did not alter the avoidance response, apomorphine increased and sulpiride reduced them in this test. Escape was not affected by any drug treatments. Heightened avoidance was not associated with the increased motor activity caused by apomorphine. In contrast with the benzodiazepine midazolam, activation of post-synaptic D2 receptors with apomorphine facilitates, whereas the D2 receptor antagonism with sulpiride inhibited the acquisition of the avoidance behavior. Together, these results bring additional evidence for a role of D2 mechanisms in the acquisition of the active avoidance.


Assuntos
Apomorfina/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Midazolam/farmacologia , Sulpirida/farmacologia , Animais , Masculino , Ratos , Ratos Wistar
15.
Rev Neurosci ; 30(3): 325-337, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30179855

RESUMO

Pharmacological and molecular imaging studies in anxiety disorders have primarily focused on the serotonin system. In the meantime, dopamine has been known as the neurotransmitter of reward for 60 years, particularly for its action in the nervous terminals of the mesocorticolimbic system. Interest in the mediation by dopamine of the well-known brain aversion system has grown recently, particularly given recent evidence obtained on the role of D2 dopamine receptors in unconditioned fear. However, it has been established that excitation of the mesocorticolimbic pathway, originating from dopaminergic (DA) neurons from the ventral tegmental area (VTA), is relevant for the development of anxiety. Among the forebrain regions innervated by this pathway, the amygdala is an essential component of the neural circuitry of conditioned fear. Current findings indicate that the dopamine D2 receptor-signaling pathway connecting the VTA to the basolateral amygdala modulates fear and anxiety, whereas neural circuits in the midbrain tectum underlie the expression of innate fear. The A13 nucleus of the zona incerta is proposed as the origin of these DA neurons projecting to caudal structures of the brain aversion system. In this article we review data obtained in studies showing that DA receptor-mediated mechanisms on ascending or descending DA pathways play opposing roles in fear/anxiety processes. Dopamine appears to mediate conditioned fear by acting at rostral levels of the brain and regulate unconditioned fear at the midbrain level.


Assuntos
Transtornos de Ansiedade/metabolismo , Dopamina/metabolismo , Medo/fisiologia , Área Tegmentar Ventral/metabolismo , Animais , Ansiedade/metabolismo , Humanos , Recompensa
16.
Neurobiol Learn Mem ; 90(3): 560-8, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18634894

RESUMO

The amygdala, the dorsal periaqueductal gray (dPAG), and the medial hypothalamus have long been recognized to be a neural system responsible for the generation and elaboration of unconditioned fear in the brain. It is also well known that this neural substrate is under a tonic inhibitory control exerted by GABA mechanisms. However, whereas there is a growing body of evidence to suggest that the amygdala and dPAG are also able to integrate conditioned fear, it is still unclear, however, how the distinct hypothalamic nuclei participate in fear conditioning. In this work we aimed to examine the extent to which the gabaergic mechanisms of this brain region are involved in conditioned fear using the fear-potentiated startle (FPS). Muscimol, a GABA-A receptor agonist, and semicarbazide, an inhibitor of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD), were used as an enhancer and inhibitor of the GABA mechanisms, respectively. Muscimol and semicarbazide were injected into the anterior hypothalamus (AHN), the dorsomedial part of the ventromedial nucleus (VMHDM), the dorsomedial (DMH) or the dorsal premammillary (PMD) nuclei of male Wistar rats before test sessions of the fear conditioning paradigm. The injections into the DMH and PMD did not produce any significant effects on FPS. On the other hand, muscimol injections into the AHN and VMHDM caused significant reduction in FPS. These results indicate that injections of muscimol and semicarbazide into the DMH and PMD fail to change the FPS, whereas the enhancement of the GABA transmission in the AHN and VMHDM produces a reduction of the conditioned fear responses. On the other hand, the inhibition of this transmission led to an increase of this conditioned response in the AHN. Thus, whereas DMH and PMD are known to be part of the caudal-most region of the medial hypothalamic defensive system, which integrates unconditioned fear, systems mediating conditioned fear select the AHN and VMHDM nuclei that belong to the rostral-most portion of the hypothalamic defense area. Thus, distinct subsets of neurons in the hypothalamus could mediate different aspects of the defensive responses.


Assuntos
Aprendizagem por Associação/fisiologia , Condicionamento Operante/fisiologia , Medo/fisiologia , Hipotálamo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Análise de Variância , Animais , Aprendizagem por Associação/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Núcleo Hipotalâmico Dorsomedial/efeitos dos fármacos , Núcleo Hipotalâmico Dorsomedial/metabolismo , Inibidores Enzimáticos/farmacologia , Agonistas GABAérgicos/farmacologia , Glutamato Descarboxilase/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo Anterior/efeitos dos fármacos , Hipotálamo Anterior/metabolismo , Masculino , Muscimol/farmacologia , Ratos , Ratos Wistar , Reflexo de Sobressalto/fisiologia , Semicarbazidas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos , Núcleo Hipotalâmico Ventromedial/metabolismo
17.
J Neurosci Methods ; 169(1): 109-18, 2008 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-18190969

RESUMO

The anxiolytic effects of benzodiazepines are reduced after a single exposure of rats to elevated plus-maze test (EPM). Midazolam showed an anxioselective profile in animals submitted to one session (T1) but did not change the usual exploratory behavior of rats exposed twice (T2) to the EPM. In this study we examined further the one-trial tolerance by performing a factor analysis of the exploratory behavior of rats injected with saline before both trials as well as an immunohistochemistry study for quantification of Fos expression in encephalic structures after these sessions. Factor analysis of all behavioral categories revealed that factor 1 consisted of anxiety-related categories in T1 whereas these same behavioral categories loaded on factor 2 in T2. Risk assessment was also dissociated as it loaded stronger on T2 (factor 3) than on T1 (factor 4). Locomotor activity in T1 loaded on factor 5. Immunohistochemistry analyses showed that Fos expression predominated in limbic structures in T1 group. The medial prefrontal cortex and amygdala were the main areas activated in T2 group. These data suggest that anxiety and risk assessment behaviors change their valence across the EPM sessions. T2 is characterized by the emergence of a fear factor, more powerful risk assessment and medial prefrontal cortex activation. The amygdala functions as a switch between the anxiety-like patterns of T1 to the cognitive control of fear prevalent in T2. The EPM retest session is proposed as a tool for assessing the cognitive activity of rodents in the control of fear.


Assuntos
Tonsila do Cerebelo/fisiologia , Tolerância a Medicamentos/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Neurofarmacologia/métodos , Testes Neuropsicológicos , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Ansiolíticos/farmacologia , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Mapeamento Encefálico , Cognição/efeitos dos fármacos , Cognição/fisiologia , Medo/efeitos dos fármacos , Medo/fisiologia , Imuno-Histoquímica , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Midazolam/farmacologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar
18.
Behav Brain Res ; 188(1): 1-13, 2008 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-18054397

RESUMO

Freezing defined as the complete absence of body movements is a normal response of animals to unavoidable fear stimuli. The present review presents a series of evidence relating different defensive patterns with specific anxiety disorders. There are at least four different kinds of freezing with specific neural substrates. The immobility induced by stimulation of the ventral column of the periaqueductal gray (vPAG) has been considered a quiescence characteristic of the recovery component of defense-recuperative processes. There is an isomorphism between freezing response to contextual stimuli paired with electrical shocks and generalized anxiety disorder. Besides, two types of freezing emerge with the electrical stimulation of the dorsal aspects of the periaqueductal gray (dPAG): the dPAG-evoked freezing and the dPAG post-stimulation freezing. Evidence is presented in support of the hypothesis that whereas dPAG-evoked freezing would serve as a model of panic attacks, the dPAG post-stimulation freezing appears to be a model of panic disorder. It is also proposed that conditioned freezing plus dPAG electrical stimulation might also mimic panic disorder with agoraphobia. A model of serotoninergic modulation through on- and off-cells of the defense reaction generated in the dPAG is also presented. The understanding of how the periaqueductal gray generates and elaborates different types of freezing is of relevance for our better knowledge of distinct types of anxiety such as panic disorder or generalized anxiety disorder.


Assuntos
Transtornos de Ansiedade/metabolismo , Reação de Congelamento Cataléptica/fisiologia , Substância Cinzenta Periaquedutal/metabolismo , Serotonina/metabolismo , Animais , Transtornos de Ansiedade/classificação , Aprendizagem por Associação/fisiologia , Condicionamento Clássico/fisiologia , Vias Neurais/metabolismo , Transtorno de Pânico/metabolismo , Ratos
19.
Eur J Pharmacol ; 590(1-3): 217-23, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18577378

RESUMO

The midbrain tectum structures, dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), are involved in the organization of fear and anxiety states during the exposure to dangerous stimuli. Since opiate withdrawal is associated with increased anxiety in both humans and animals, this study aimed to investigate the possible sensitization of the neural substrates of fear in the midbrain tectum and its influence on the morphine withdrawal-induced anxiety. For the production of drug withdrawal, rats received morphine injections (10 mg/kg; s.c.) twice daily during 10 days. Forty-eight hours after the interruption of the chronic treatment, independent groups were probed in the elevated plus-maze and open-field tests. Additional groups of animals were implanted with a bipolar electrode into the dPAG or the IC and submitted to the electrical stimulation of these structures for the determination of the freezing and escape thresholds after 48 h of withdrawal. Our results showed that the morphine withdrawal promoted clear-cut levels of anxiety without the somatic signs of opiate withdrawal. Moreover, morphine-withdrawn rats had an increase in the reactivity to the electrical stimulation of the dPAG and the IC. These findings suggest that the increased anxiety induced by morphine withdrawal is associated with the sensitization of the neural substrates of fear in the dPAG and the IC. So, the present results give support to the hypothesis that withdrawal from chronic treatment with morphine leads to fear states possibly engendered by activation of the dPAG and IC, regardless of the production of somatic symptoms.


Assuntos
Medo , Colículos Inferiores/fisiologia , Morfina/efeitos adversos , Substância Cinzenta Periaquedutal/fisiologia , Síndrome de Abstinência a Substâncias/etiologia , Tonsila do Cerebelo/fisiologia , Animais , Ansiedade/etiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Wistar
20.
Prog Neuropsychopharmacol Biol Psychiatry ; 32(7): 1715-21, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18687375

RESUMO

The amygdala is critically involved in the regulation of unconditioned and conditioned reactions to threatening stimuli. It has been suggested that a neural circuit responsible for the production of defensive behavior elicited by the dorsal periaqueductal gray (dPAG) stimulation may project through ascending fibers to forebrain structures such as the basolateral complex of the amygdala (BLA). The present study evaluates the involvement of the dPAG and BLA in the mediation of unconditioned and conditioned responses organized in the dPAG using the open field and the conditioned place aversion (CPA) tests. In both tests, the intra-dPAG injections of semicarbazide (SEM), an inhibitor of the GABA synthesizing enzyme, was used as unconditioned stimulus (US). Using the open field test, we examine the effects of BLA inactivation with the GABA-(A) receptor agonist muscimol (MUS) on the unconditioned fear. We also investigated, through the CPA test, the effects of BLA and/or dPAG inactivation with MUS on the acquisition and the expression of the fear conditioned response. Our results showed that intra-BLA injections of MUS did not change the unconditioned fear elicited by dPAG injections of SEM. As for the CPA test, intra-BLA and intra-dPAG injections of MUS impaired the expression of CPA behavior induced by SEM injections into the dPAG. However, this inactivation of BLA did not impair the acquisition of the CPA behavior induced by injections of SEM into the dPAG. Altogether, these findings suggest that BLA does not participate in the mediation of unconditioned fear induced by dPAG chemical stimulation or in the acquisition of CPA in which aversive stimulation of the dPAG was used as US. In contrast, our results indicate that the activation of the dPAG and BLA is essential to the expression of the conditioned aversive response.


Assuntos
Tonsila do Cerebelo/fisiologia , Aprendizagem da Esquiva/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/fisiologia , Semicarbazidas/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Reação de Congelamento Cataléptica/efeitos dos fármacos , Agonistas GABAérgicos/farmacologia , Masculino , Muscimol/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa