Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 26(9): 2391-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18583542

RESUMO

Limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of disorders characterized by progressive degeneration of skeletal muscle caused by the absence of or defective muscular proteins. The murine model for limb-girdle muscular dystrophy 2B (LGMD2B), the SJL mice, carries a deletion in the dysferlin gene that causes a reduction in the protein levels to 15% of normal. The mice show muscle weakness that begins at 4-6 weeks and is nearly complete by 8 months of age. The possibility of restoring the defective muscle protein and improving muscular performance by cell therapy is a promising approach for the treatment of LGMDs or other forms of progressive muscular dystrophies. Here we have injected human adipose stromal cells (hASCs) into the SJL mice, without immunosuppression, aiming to assess their ability to engraft into recipient dystrophic muscle after systemic delivery; form chimeric human/mouse muscle fibers; express human muscle proteins in the dystrophic host and improve muscular performance. We show for the first time that hASCs are not rejected after systemic injection even without immunosuppression, are able to fuse with the host muscle, express a significant amount of human muscle proteins, and improve motor ability of injected animals. These results may have important applications for future therapy in patients with different forms of muscular dystrophies.


Assuntos
Tecido Adiposo/citologia , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Animais , Células Cultivadas , Disferlina , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/terapia , Células Estromais/citologia , Células Estromais/transplante
2.
Biol Cell ; 100(4): 231-41, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17997718

RESUMO

BACKGROUND INFORMATION: DMD (Duchenne muscular dystrophy) is a devastating X-linked disorder characterized by progressive muscle degeneration and weakness. The use of cell therapy for the repair of defective muscle is being pursued as a possible treatment for DMD. Mesenchymal stem cells have the potential to differentiate and display a myogenic phenotype in vitro. Since liposuctioned human fat is available in large quantities, it may be an ideal source of stem cells for therapeutic applications. ASCs (adipose-derived stem cells) are able to restore dystrophin expression in the muscles of mdx (X-linked muscular dystrophy) mice. However, the outcome when these cells interact with human dystrophic muscle is still unknown. RESULTS: We show here that ASCs participate in myotube formation when cultured together with differentiating human DMD myoblasts, resulting in the restoration of dystrophin expression. Similarly, dystrophin was induced when ASCs were co-cultivated with DMD myotubes. Experiments with GFP (green fluorescent protein)-positive ASCs and DAPI (4',6-diamidino-2-phenylindole)-stained DMD myoblasts indicated that ASCs participate in human myogenesis through cellular fusion. CONCLUSIONS: These results show that ASCs have the potential to interact with dystrophic muscle cells, restoring dystrophin expression of DMD cells in vitro. The possibility of using adipose tissue as a source of stem cell therapies for muscular diseases is extremely exciting.


Assuntos
Tecido Adiposo/citologia , Distrofina/metabolismo , Células-Tronco Multipotentes/citologia , Células Musculares/citologia , Desenvolvimento Muscular , Distrofia Muscular de Duchenne/metabolismo , Células-Tronco/citologia , Western Blotting , Técnicas de Cultura de Células , Diferenciação Celular , Separação Celular , Técnicas de Cocultura , Citometria de Fluxo , Expressão Gênica , Humanos , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa