Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Annu Rev Biochem ; 89: 417-442, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32569528

RESUMO

Stalled protein synthesis produces defective nascent chains that can harm cells. In response, cells degrade these nascent chains via a process called ribosome-associated quality control (RQC). Here, we review the irregularities in the translation process that cause ribosomes to stall as well as how cells use RQC to detect stalled ribosomes, ubiquitylate their tethered nascent chains, and deliver the ubiquitylated nascent chains to the proteasome. We additionally summarize how cells respond to RQC failure.


Assuntos
Escherichia coli/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Ribossomos/genética , Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Poli A/química , Poli A/genética , Poli A/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteólise , Splicing de RNA , Estabilidade de RNA , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Cell ; 183(6): 1572-1585.e16, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33157040

RESUMO

Cellular functioning requires the orchestration of thousands of molecular interactions in time and space. Yet most molecules in a cell move by diffusion, which is sensitive to external factors like temperature. How cells sustain complex, diffusion-based systems across wide temperature ranges is unknown. Here, we uncover a mechanism by which budding yeast modulate viscosity in response to temperature and energy availability. This "viscoadaptation" uses regulated synthesis of glycogen and trehalose to vary the viscosity of the cytosol. Viscoadaptation functions as a stress response and a homeostatic mechanism, allowing cells to maintain invariant diffusion across a 20°C temperature range. Perturbations to viscoadaptation affect solubility and phase separation, suggesting that viscoadaptation may have implications for multiple biophysical processes in the cell. Conditions that lower ATP trigger viscoadaptation, linking energy availability to rate regulation of diffusion-controlled processes. Viscoadaptation reveals viscosity to be a tunable property for regulating diffusion-controlled processes in a changing environment.


Assuntos
Metabolismo Energético , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Temperatura , Adaptação Fisiológica , Trifosfato de Adenosina/metabolismo , Difusão , Glicogênio/metabolismo , Homeostase , Modelos Biológicos , Solubilidade , Trealose , Viscosidade
3.
Mol Cell ; 81(1): 6-7, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417855

RESUMO

C-terminal tailing is an ancient and conserved form of peptide synthesis that protects cells from incomplete and potentially toxic translation products. Filbeck et al. (2020) and Crowe-McAuliffe et al. (2020) use structural, genetic, and biochemical approaches to elucidate the mechanisms driving C-terminal tailing.


Assuntos
Bactérias , Ribossomos , Controle de Qualidade
4.
Cell ; 154(2): 442-51, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23849981

RESUMO

The genetic interrogation and reprogramming of cells requires methods for robust and precise targeting of genes for expression or repression. The CRISPR-associated catalytically inactive dCas9 protein offers a general platform for RNA-guided DNA targeting. Here, we show that fusion of dCas9 to effector domains with distinct regulatory functions enables stable and efficient transcriptional repression or activation in human and yeast cells, with the site of delivery determined solely by a coexpressed short guide (sg)RNA. Coupling of dCas9 to a transcriptional repressor domain can robustly silence expression of multiple endogenous genes. RNA-seq analysis indicates that CRISPR interference (CRISPRi)-mediated transcriptional repression is highly specific. Our results establish that the CRISPR system can be used as a modular and flexible DNA-binding platform for the recruitment of proteins to a target DNA sequence, revealing the potential of CRISPRi as a general tool for the precise regulation of gene expression in eukaryotic cells.


Assuntos
Proteínas de Bactérias/genética , Marcação de Genes/métodos , Streptococcus pyogenes , Células HEK293 , Células HeLa , Humanos , Saccharomyces cerevisiae/genética , Pequeno RNA não Traduzido
5.
Cell ; 149(6): 1339-52, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682253

RESUMO

We present a genetic interaction map of pairwise measures including ∼40% of nonessential S. pombe genes. By comparing interaction maps for fission and budding yeast, we confirmed widespread conservation of genetic relationships within and between complexes and pathways. However, we identified an important subset of orthologous complexes that have undergone functional "repurposing": the evolution of divergent functions and partnerships. We validated three functional repurposing events in S. pombe and mammalian cells and discovered that (1) two lumenal sensors of misfolded ER proteins, the kinase/nuclease Ire1 and the glucosyltransferase Gpt1, act together to mount an ER stress response; (2) ESCRT factors regulate spindle-pole-body duplication; and (3) a membrane-protein phosphatase and kinase complex, the STRIPAK complex, bridges the cis-Golgi, the centrosome, and the outer nuclear membrane to direct mitotic progression. Each discovery opens new areas of inquiry and-together-have implications for model organism-based research and the evolution of genetic systems.


Assuntos
Epistasia Genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Evolução Biológica , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Glicoproteínas de Membrana , Mitose , Complexos Multiproteicos/metabolismo , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Fuso Acromático , Resposta a Proteínas não Dobradas
6.
Cell ; 151(5): 1042-54, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23178123

RESUMO

The conserved transcriptional regulator heat shock factor 1 (Hsf1) is a key sensor of proteotoxic and other stress in the eukaryotic cytosol. We surveyed Hsf1 activity in a genome-wide loss-of-function library in Saccaromyces cerevisiae as well as ~78,000 double mutants and found Hsf1 activity to be modulated by highly diverse stresses. These included disruption of a ribosome-bound complex we named the Ribosome Quality Control Complex (RQC) comprising the Ltn1 E3 ubiquitin ligase, two highly conserved but poorly characterized proteins (Tae2 and Rqc1), and Cdc48 and its cofactors. Electron microscopy and biochemical analyses revealed that the RQC forms a stable complex with 60S ribosomal subunits containing stalled polypeptides and triggers their degradation. A negative feedback loop regulates the RQC, and Hsf1 senses an RQC-mediated translation-stress signal distinctly from other stresses. Our work reveals the range of stresses Hsf1 monitors and elucidates a conserved cotranslational protein quality control mechanism.


Assuntos
Complexos Multiproteicos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico/genética , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína com Valosina
7.
Mol Cell ; 75(4): 835-848.e8, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31378462

RESUMO

Mitochondrial dysfunction and proteostasis failure frequently coexist as hallmarks of neurodegenerative disease. How these pathologies are related is not well understood. Here, we describe a phenomenon termed MISTERMINATE (mitochondrial-stress-induced translational termination impairment and protein carboxyl terminal extension), which mechanistically links mitochondrial dysfunction with proteostasis failure. We show that mitochondrial dysfunction impairs translational termination of nuclear-encoded mitochondrial mRNAs, including complex-I 30kD subunit (C-I30) mRNA, occurring on the mitochondrial surface in Drosophila and mammalian cells. Ribosomes stalled at the normal stop codon continue to add to the C terminus of C-I30 certain amino acids non-coded by mRNA template. C-terminally extended C-I30 is toxic when assembled into C-I and forms aggregates in the cytosol. Enhancing co-translational quality control prevents C-I30 C-terminal extension and rescues mitochondrial and neuromuscular degeneration in a Parkinson's disease model. These findings emphasize the importance of efficient translation termination and reveal unexpected link between mitochondrial health and proteome homeostasis mediated by MISTERMINATE.


Assuntos
Códon de Terminação , Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Deficiências na Proteostase/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HeLa , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/genética , Deficiências na Proteostase/genética , Deficiências na Proteostase/patologia , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(23): 11291-11298, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31101715

RESUMO

Diverse perturbations to endoplasmic reticulum (ER) functions compromise the proper folding and structural maturation of secretory proteins. To study secretory pathway physiology during such "ER stress," we employed an ER-targeted, redox-responsive, green fluorescent protein-eroGFP-that reports on ambient changes in oxidizing potential. Here we find that diverse ER stress regimes cause properly folded, ER-resident eroGFP (and other ER luminal proteins) to "reflux" back to the reducing environment of the cytosol as intact, folded proteins. By utilizing eroGFP in a comprehensive genetic screen in Saccharomyces cerevisiae, we show that ER protein reflux during ER stress requires specific chaperones and cochaperones residing in both the ER and the cytosol. Chaperone-mediated ER protein reflux does not require E3 ligase activity, and proceeds even more vigorously when these ER-associated degradation (ERAD) factors are crippled, suggesting that reflux may work in parallel with ERAD. In summary, chaperone-mediated ER protein reflux may be a conserved protein quality control process that evolved to maintain secretory pathway homeostasis during ER protein-folding stress.


Assuntos
Citosol/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Chaperonas Moleculares/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Homeostase/fisiologia , Oxirredução , Dobramento de Proteína , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
9.
RNA ; 23(5): 798-810, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28223409

RESUMO

Premature arrest of protein synthesis within the open reading frame elicits a protective response that degrades the incomplete nascent chain. In this response, arrested 80S ribosomes are split into their large and small subunits, allowing assembly of the ribosome quality control complex (RQC), which targets nascent chains for degradation. How the cell recognizes arrested nascent chains among the vast pool of actively translating polypeptides is poorly understood. We systematically examined translation arrest and modification of nascent chains in Saccharomyces cerevisiae to characterize the steps that couple arrest to RQC targeting. We focused our analysis on two poorly understood 80S ribosome-binding proteins previously implicated in the response to failed translation, Asc1 and Hel2, as well as a new component of the pathway, Slh1, that we identified here. We found that premature arrest at ribosome stalling sequences still occurred robustly in the absence of Asc1, Hel2, and Slh1. However, these three factors were required for the RQC to modify the nascent chain. We propose that Asc1, Hel2, and Slh1 target arresting ribosomes and that this targeting event is a precondition for the RQC to engage the incomplete nascent chain and facilitate its degradation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , RNA Helicases DEAD-box/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma , Ubiquitina-Proteína Ligases/metabolismo
10.
Biochemistry ; 58(43): 4335-4336, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31617348
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa