Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 121(1): 44-60, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34890578

RESUMO

Cell dispersion from a confined area is fundamental in a number of biological processes, including cancer metastasis. To date, a quantitative understanding of the interplay of single-cell motility, cell proliferation, and intercellular contacts remains elusive. In particular, the role of E- and N-cadherin junctions, central components of intercellular contacts, is still controversial. Combining theoretical modeling with in vitro observations, we investigate the collective spreading behavior of colonies of human cancer cells (T24). The spreading of these colonies is driven by stochastic single-cell migration with frequent transient cell-cell contacts. We find that inhibition of E- and N-cadherin junctions decreases colony spreading and average spreading velocities, without affecting the strength of correlations in spreading velocities of neighboring cells. Based on a biophysical simulation model for cell migration, we show that the behavioral changes upon disruption of these junctions can be explained by reduced repulsive excluded volume interactions between cells. This suggests that in cancer cell migration, cadherin-based intercellular contacts sharpen cell boundaries leading to repulsive rather than cohesive interactions between cells, thereby promoting efficient cell spreading during collective migration.


Assuntos
Caderinas , Neoplasias , Adesão Celular , Comunicação Celular , Movimento Celular , Proliferação de Células , Humanos
2.
Mol Oncol ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39404181

RESUMO

Advanced breast cancer, as well as ineffective treatments leading to surviving cancer cells, can result in the dissemination of these malignant cells from the primary tumor to distant organs. Recent research has shown that microRNA 200c (miR-200c) can hamper certain steps of the invasion-metastasis cascade. However, it is still unclear whether miR-200c expression alone is sufficient to prevent breast cancer cells from metastasis formation. Hence, we performed a xenograft mouse experiment with inducible miR-200c expression in MDA-MB 231 cells. The ex vivo analysis of metastatic sites in a multitude of organs, including lung, liver, brain, and spleen, revealed a dramatically reduced metastatic burden in mice with miR-200c-expressing tumors. A fundamental prerequisite for metastasis formation is the motility of cancer cells and, therefore, their migration. Consequently, we analyzed the effect of miR-200c on collective- and single-cell migration in vitro, utilizing MDA-MB 231 and MCF7 cell systems with genetically modified miR-200c expression. Analysis of collective-cell migration revealed confluence-dependent motility of cells with altered miR-200c expression. Additionally, scratch assays showed an enhanced predisposition of miR-200c-negative cells to leave cell clusters. The in-between stage of collective- and single-cell migration was validated using transwell assays, which showed reduced migration of miR-200c-positive cells. Finally, to measure migration at the single-cell level, a novel assay on dumbbell-shaped micropatterns was performed, which revealed that miR-200c critically determines confined cell motility. All of these results demonstrate that sole expression of miR-200c impedes metastasis formation in vivo and migration in vitro and highlights miR-200c as a metastasis suppressor in breast cancer.

3.
Nat Commun ; 14(1): 1643, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964141

RESUMO

The multicellular organization of diverse systems, including embryos, intestines, and tumors relies on coordinated cell migration in curved environments. In these settings, cells establish supracellular patterns of motion, including collective rotation and invasion. While such collective modes have been studied extensively in flat systems, the consequences of geometrical and topological constraints on collective migration in curved systems are largely unknown. Here, we discover a collective mode of cell migration in rotating spherical tissues manifesting as a propagating single-wavelength velocity wave. This wave is accompanied by an apparently incompressible supracellular flow pattern featuring topological defects as dictated by the spherical topology. Using a minimal active particle model, we reveal that this collective mode arises from the effect of curvature on the active flocking behavior of a cell layer confined to a spherical surface. Our results thus identify curvature-induced velocity waves as a mode of collective cell migration, impacting the dynamical organization of 3D curved tissues.


Assuntos
Movimento Celular , Rotação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa