Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Landsc Urban Plan ; 2472024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38828213

RESUMO

As the number of highly destructive wildfires grows, it is increasingly important to understand the long-term changes that occur to fire-affected places. Integrating approaches from social and biophysical science, we document two forms of neighborhood change following the 2018 Camp Fire in the United States, examining the more than 17,000 residential structures within the burn footprint. We found that mobile or motor homes, lower-value residences, and absentee owner residences had a significantly higher probability of being destroyed, providing evidence that housing stock filtering facilitated socially stratified patterns of physical damage. While the relationship between building value and destruction probability could be explained by measures of building density and distance to nearby roads, building type remained an independent predictor of structure loss that we could not fully explain by adding environmental covariates to our models. Using a geospatial machine learning technique, we then identified buildings that had been reconstructed within the burn footprint 20 months after the fire. We found that reconstructed buildings were more likely to have been owner-occupied prior to the fire and had higher average pre-fire property value, suggesting an emerging pattern of cost-burden gentrification. Our findings illustrate the importance of examining the built environment as a driver of socially uneven disaster impacts. Wildfire mitigation strategies are needed for mobile and motor home residents, renters, low-income residents, and dense neighborhoods.

2.
Geophys Res Lett ; 48(7): e2020GL091520, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35860786

RESUMO

Prior work suggests drought exacerbates US air quality by increasing surface ozone concentrations. We analyze 2005-2015 tropospheric column concentrations of two trace gases that serve as proxies for surface ozone precursors retrieved from the OMI/Aura satellite: Nitrogen dioxide (ΩNO2; NOx proxy) and formaldehyde (ΩHCHO; VOC proxy). We find 3.5% and 7.7% summer drought enhancements (classified by SPEI) for ΩNO2 and ΩHCHO, respectively, corroborating signals previously extracted from ground-level observations. When we subset by land cover type, the strongest ΩHCHO drought enhancement (10%) occurs in the woody savannas of the Southeast US. By isolating the influences of precipitation and temperature, we infer that enhanced biogenic VOC emissions in this region increase ΩHCHO independently with both high temperature and low precipitation during drought. The strongest ΩNO2 drought enhancement (6.0%) occurs over Midwest US croplands and grasslands, which we infer to reflect the sensitivity of soil NOx emissions to temperature.

3.
Ann N Y Acad Sci ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38925543

RESUMO

This Introduction to NPCC4 provides an overview of the first three NPCC Reports and contextualizes NPCC4's deliberate decision to address justice, equity, diversity, and inclusion in its collective work and in its own practices, procedures, and methods of assessment. Next, it summarizes the assessment process, including greater emphasis on sustained assessment. Finally, it introduces the NPCC4 chapters and their scope.

4.
Ann N Y Acad Sci ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159313

RESUMO

This chapter provides an overview of the major themes, findings, and recommendations from NPCC4. It presents summary statements from each chapter of the assessment which identify salient and pressing issues raised and provides recommendations for future research and for enhancement of climate resiliency. The chapter also outlines a set of broader recommendations for future NPCC work and identifies some key topics for the next assessment.

5.
Ann N Y Acad Sci ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159316

RESUMO

We summarize historic New York City (NYC) climate change trends and provide the latest scientific analyses on projected future changes based on a range of global greenhouse gas emissions scenarios. Building on previous NPCC assessment reports, we describe new methods used to develop the projections of record for sea level rise, temperature, and precipitation for NYC, across multiple emissions pathways and analyze the issue of the "hot models" associated with the 6th phase of the Coupled Model Intercomparison Project (CMIP6) and their potential impact on NYC's climate projections. We describe the state of the science on temperature variability within NYC and explain both the large-scale and regional dynamics that lead to extreme heat events, as well as the local physical drivers that lead to inequitable distributions of exposure to extreme heat. We identify three areas of tail risk and potential for its mischaracterization, including the physical processes of extreme events and the effects of a changing climate. Finally, we review opportunities for future research, with a focus on the hot model problem and the intersection of spatial resolution of projections with gaps in knowledge in the impacts of the climate signal on intraurban heat and heat exposure.

6.
Ann N Y Acad Sci ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38826131

RESUMO

New York City (NYC) faces many challenges in the coming decades due to climate change and its interactions with social vulnerabilities and uneven urban development patterns and processes. This New York City Panel on Climate Change (NPCC) report contributes to the Panel's mandate to advise the city on climate change and provide timely climate risk information that can inform flexible and equitable adaptation pathways that enhance resilience to climate change. This report presents up-to-date scientific information as well as updated sea level rise projections of record. We also present a new methodology related to climate extremes and describe new methods for developing the next generation of climate projections for the New York metropolitan region. Future work by the Panel should compare the temperature and precipitation projections presented in this report with a subset of models to determine the potential impact and relevance of the "hot model" problem. NPCC4 expects to establish new projections-of-record for precipitation and temperature in 2024 based on this comparison and additional analysis. Nevertheless, the temperature and precipitation projections presented in this report may be useful for NYC stakeholders in the interim as they rely on the newest generation of global climate models.

7.
Geohealth ; 5(8): e2021GH000423, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34377879

RESUMO

This study summarizes the results from fitting a Bayesian hierarchical spatiotemporal model to coronavirus disease 2019 (COVID-19) cases and deaths at the county level in the United States for the year 2020. Two models were created, one for cases and one for deaths, utilizing a scaled Besag, York, Mollié model with Type I spatial-temporal interaction. Each model accounts for 16 social vulnerability and 7 environmental variables as fixed effects. The spatial pattern between COVID-19 cases and deaths is significantly different in many ways. The spatiotemporal trend of the pandemic in the United States illustrates a shift out of many of the major metropolitan areas into the United States Southeast and Southwest during the summer months and into the upper Midwest beginning in autumn. Analysis of the major social vulnerability predictors of COVID-19 infection and death found that counties with higher percentages of those not having a high school diploma, having non-White status and being Age 65 and over to be significant. Among the environmental variables, above ground level temperature had the strongest effect on relative risk to both cases and deaths. Hot and cold spots, areas of statistically significant high and low COVID-19 cases and deaths respectively, derived from the convolutional spatial effect show that areas with a high probability of above average relative risk have significantly higher Social Vulnerability Index composite scores. The same analysis utilizing the spatiotemporal interaction term exemplifies a more complex relationship between social vulnerability, environmental measurements, COVID-19 cases, and COVID-19 deaths.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa