Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cell ; 186(22): 4936-4955.e26, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37788668

RESUMO

Intrinsically disordered regions (IDRs) represent a large percentage of overall nuclear protein content. The prevailing dogma is that IDRs engage in non-specific interactions because they are poorly constrained by evolutionary selection. Here, we demonstrate that condensate formation and heterotypic interactions are distinct and separable features of an IDR within the ARID1A/B subunits of the mSWI/SNF chromatin remodeler, cBAF, and establish distinct "sequence grammars" underlying each contribution. Condensation is driven by uniformly distributed tyrosine residues, and partner interactions are mediated by non-random blocks rich in alanine, glycine, and glutamine residues. These features concentrate a specific cBAF protein-protein interaction network and are essential for chromatin localization and activity. Importantly, human disease-associated perturbations in ARID1B IDR sequence grammars disrupt cBAF function in cells. Together, these data identify IDR contributions to chromatin remodeling and explain how phase separation provides a mechanism through which both genomic localization and functional partner recruitment are achieved.


Assuntos
Montagem e Desmontagem da Cromatina , Complexos Multiproteicos , Proteínas Nucleares , Humanos , Cromatina , Proteínas de Ligação a DNA/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo
2.
Cell ; 181(2): 306-324.e28, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302570

RESUMO

Liquid-liquid phase separation (LLPS) mediates formation of membraneless condensates such as those associated with RNA processing, but the rules that dictate their assembly, substructure, and coexistence with other liquid-like compartments remain elusive. Here, we address the biophysical mechanism of this multiphase organization using quantitative reconstitution of cytoplasmic stress granules (SGs) with attached P-bodies in human cells. Protein-interaction networks can be viewed as interconnected complexes (nodes) of RNA-binding domains (RBDs), whose integrated RNA-binding capacity determines whether LLPS occurs upon RNA influx. Surprisingly, both RBD-RNA specificity and disordered segments of key proteins are non-essential, but modulate multiphase condensation. Instead, stoichiometry-dependent competition between protein networks for connecting nodes determines SG and P-body composition and miscibility, while competitive binding of unconnected proteins disengages networks and prevents LLPS. Inspired by patchy colloid theory, we propose a general framework by which competing networks give rise to compositionally specific and tunable condensates, while relative linkage between nodes underlies multiphase organization.


Assuntos
Grânulos Citoplasmáticos/fisiologia , Estruturas Citoplasmáticas/fisiologia , Mapas de Interação de Proteínas/fisiologia , Fenômenos Biofísicos , Linhagem Celular Tumoral , Citoplasma/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Extração Líquido-Líquido/métodos , Organelas/química , RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/fisiologia
3.
Nat Rev Mol Cell Biol ; 22(3): 165-182, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32873929

RESUMO

The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid-liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction.


Assuntos
Nucléolo Celular/química , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Ciclo Celular/fisiologia , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Fracionamento Químico , Expressão Gênica , Humanos , Extração Líquido-Líquido , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Ribonucleoproteínas/metabolismo , Ribossomos/fisiologia
4.
Cell ; 175(6): 1467-1480.e13, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30500534

RESUMO

Liquid-liquid phase separation plays a key role in the assembly of diverse intracellular structures. However, the biophysical principles by which phase separation can be precisely localized within subregions of the cell are still largely unclear, particularly for low-abundance proteins. Here, we introduce an oligomerizing biomimetic system, "Corelets," and utilize its rapid and quantitative light-controlled tunability to map full intracellular phase diagrams, which dictate the concentrations at which phase separation occurs and the transition mechanism, in a protein sequence dependent manner. Surprisingly, both experiments and simulations show that while intracellular concentrations may be insufficient for global phase separation, sequestering protein ligands to slowly diffusing nucleation centers can move the cell into a different region of the phase diagram, resulting in localized phase separation. This diffusive capture mechanism liberates the cell from the constraints of global protein abundance and is likely exploited to pattern condensates associated with diverse biological processes. VIDEO ABSTRACT.


Assuntos
Materiais Biomiméticos , Citoplasma/metabolismo , Animais , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/farmacologia , Células HEK293 , Células HeLa , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Células NIH 3T3
5.
Cell ; 175(6): 1481-1491.e13, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30500535

RESUMO

Phase transitions involving biomolecular liquids are a fundamental mechanism underlying intracellular organization. In the cell nucleus, liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is implicated in assembly of the nucleolus, as well as transcriptional clusters, and other nuclear bodies. However, it remains unclear whether and how physical forces associated with nucleation, growth, and wetting of liquid condensates can directly restructure chromatin. Here, we use CasDrop, a novel CRISPR-Cas9-based optogenetic technology, to show that various IDPs phase separate into liquid condensates that mechanically exclude chromatin as they grow and preferentially form in low-density, largely euchromatic regions. A minimal physical model explains how this stiffness sensitivity arises from lower mechanical energy associated with deforming softer genomic regions. Targeted genomic loci can nonetheless be mechanically pulled together through surface tension-driven coalescence. Nuclear condensates may thus function as mechano-active chromatin filters, physically pulling in targeted genomic loci while pushing out non-targeted regions of the neighboring genome. VIDEO ABSTRACT.


Assuntos
Nucléolo Celular/metabolismo , Cromatina/metabolismo , Citoplasma/metabolismo , Genoma Humano , Proteínas Intrinsicamente Desordenadas/metabolismo , Transição de Fase , Animais , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Células NIH 3T3
6.
Cell ; 168(1-2): 159-171.e14, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28041848

RESUMO

Phase transitions driven by intrinsically disordered protein regions (IDRs) have emerged as a ubiquitous mechanism for assembling liquid-like RNA/protein (RNP) bodies and other membrane-less organelles. However, a lack of tools to control intracellular phase transitions limits our ability to understand their role in cell physiology and disease. Here, we introduce an optogenetic platform that uses light to activate IDR-mediated phase transitions in living cells. We use this "optoDroplet" system to study condensed phases driven by the IDRs of various RNP body proteins, including FUS, DDX4, and HNRNPA1. Above a concentration threshold, these constructs undergo light-activated phase separation, forming spatiotemporally definable liquid optoDroplets. FUS optoDroplet assembly is fully reversible even after multiple activation cycles. However, cells driven deep within the phase boundary form solid-like gels that undergo aging into irreversible aggregates. This system can thus elucidate not only physiological phase transitions but also their link to pathological aggregates.


Assuntos
Imagem Molecular/métodos , Transição de Fase , Proteínas/química , Animais , Proteínas de Arabidopsis , Criptocromos , Proteínas Intrinsicamente Desordenadas , Cinética , Luz , Camundongos , Modelos Químicos , Células NIH 3T3 , Optogenética , Mapas de Interação de Proteínas , Proteínas/metabolismo
7.
Cell ; 165(7): 1686-1697, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27212236

RESUMO

The nucleolus and other ribonucleoprotein (RNP) bodies are membrane-less organelles that appear to assemble through phase separation of their molecular components. However, many such RNP bodies contain internal subcompartments, and the mechanism of their formation remains unclear. Here, we combine in vivo and in vitro studies, together with computational modeling, to show that subcompartments within the nucleolus represent distinct, coexisting liquid phases. Consistent with their in vivo immiscibility, purified nucleolar proteins phase separate into droplets containing distinct non-coalescing phases that are remarkably similar to nucleoli in vivo. This layered droplet organization is caused by differences in the biophysical properties of the phases-particularly droplet surface tension-which arises from sequence-encoded features of their macromolecular components. These results suggest that phase separation can give rise to multilayered liquids that may facilitate sequential RNA processing reactions in a variety of RNP bodies. PAPERCLIP.


Assuntos
Nucléolo Celular/química , Animais , Caenorhabditis elegans , Células Cultivadas , Proteínas Cromossômicas não Histona/análise , Intestinos/química , Intestinos/citologia , Mamíferos , Proteínas Nucleares/análise , Nucleofosmina , Oócitos/química , Oócitos/citologia , Processamento Pós-Transcricional do RNA , Ribonucleoproteínas/metabolismo , Xenopus laevis
8.
Mol Cell ; 83(17): 3095-3107.e9, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37683610

RESUMO

The nucleolus is the largest biomolecular condensate and facilitates transcription, processing, and assembly of ribosomal RNA (rRNA). Although nucleolar function is thought to require multiphase liquid-like properties, nucleolar fluidity and its connection to the highly coordinated transport and biogenesis of ribosomal subunits are poorly understood. Here, we use quantitative imaging, mathematical modeling, and pulse-chase nucleotide labeling to examine nucleolar material properties and rRNA dynamics. The mobility of rRNA is several orders of magnitude slower than that of nucleolar proteins, with rRNA steadily moving away from the transcriptional sites in a slow (∼1 Å/s), radially directed fashion. This constrained but directional mobility, together with polymer physics-based calculations, suggests that nascent rRNA forms an entangled gel, whose constant production drives outward flow. We propose a model in which progressive maturation of nascent rRNA reduces its initial entanglement, fluidizing the nucleolar periphery to facilitate the release of assembled pre-ribosomal particles.


Assuntos
RNA Ribossômico , RNA , RNA/genética , RNA Ribossômico/genética , Condensados Biomoleculares , Nucléolo Celular/genética , Proteínas Nucleares/genética
9.
Genes Dev ; 37(3-4): 80-85, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36801820

RESUMO

Zygotic genome activation has been extensively studied in a variety of systems including flies, frogs, and mammals. However, there is comparatively little known about the precise timing of gene induction during the earliest phases of embryogenesis. Here we used high-resolution in situ detection methods, along with genetic and experimental manipulations, to study the timing of zygotic activation in the simple model chordate Ciona with minute-scale temporal precision. We found that two Prdm1 homologs in Ciona are the earliest genes that respond to FGF signaling. We present evidence for a FGF timing mechanism that is driven by ERK-mediated derepression of the ERF repressor. Depletion of ERF results in ectopic activation of FGF target genes throughout the embryo. A highlight of this timer is the sharp transition in FGF responsiveness between the eight- and 16-cell stages of development. We propose that this timer is an innovation of chordates that is also used by vertebrates.


Assuntos
Embrião não Mamífero , Zigoto , Animais , Embrião não Mamífero/fisiologia , Zigoto/fisiologia , Genoma/genética , Desenvolvimento Embrionário/genética , Vertebrados , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos
12.
Nature ; 609(7926): 255-264, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071192

RESUMO

Liquid-liquid phase separation and related phase transitions have emerged as generic mechanisms in living cells for the formation of membraneless compartments or biomolecular condensates. The surface between two immiscible phases has an interfacial tension, generating capillary forces that can perform work on the surrounding environment. Here we present the physical principles of capillarity, including examples of how capillary forces structure multiphase condensates and remodel biological substrates. As with other mechanisms of intracellular force generation, for example, molecular motors, capillary forces can influence biological processes. Identifying the biomolecular determinants of condensate capillarity represents an exciting frontier, bridging soft matter physics and cell biology.


Assuntos
Condensados Biomoleculares , Condensados Biomoleculares/química , Biologia Celular , Transição de Fase
13.
Cell ; 149(6): 1188-91, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682242

RESUMO

Nonmembrane-bound organelles such as RNA granules behave like dynamic droplets, but the molecular details of their assembly are poorly understood. Several recent papers identify structural features that drive granule assembly, shedding light on how phase transitions functionally organize the cell and may lead to pathological protein aggregation.


Assuntos
Proteínas/química , RNA/química , Ribonucleoproteínas/química , Animais , Núcleo Celular/metabolismo , Fenômenos Fisiológicos Celulares , Citoplasma/metabolismo , Humanos , Proteínas/metabolismo , RNA/metabolismo
14.
Nature ; 599(7885): 503-506, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34552246

RESUMO

All structures within living cells must form at the right time and place. This includes condensates such as the nucleolus, Cajal bodies and stress granules, which form via liquid-liquid phase separation of biomolecules, particularly proteins enriched in intrinsically disordered regions (IDRs)1,2. In non-living systems, the initial stages of nucleated phase separation arise when thermal fluctuations overcome an energy barrier due to surface tension. This phenomenon can be modelled by classical nucleation theory (CNT), which describes how the rate of droplet nucleation depends on the degree of supersaturation, whereas the location at which droplets appear is controlled by interfacial heterogeneities3,4. However, it remains unknown whether this framework applies in living cells, owing to the multicomponent and highly complex nature of the intracellular environment, including the presence of diverse IDRs, whose specificity of biomolecular interactions is unclear5-8. Here we show that despite this complexity, nucleation in living cells occurs through a physical process similar to that in inanimate materials, but the efficacy of nucleation sites can be tuned by their biomolecular features. By quantitatively characterizing the nucleation kinetics of endogenous and biomimetic condensates in living cells, we find that key features of condensate nucleation can be quantitatively understood through a CNT-like theoretical framework. Nucleation rates can be substantially enhanced by compatible biomolecular (IDR) seeds, and the kinetics of cellular processes can impact condensate nucleation rates and specificity of location. This quantitative framework sheds light on the intracellular nucleation landscape, and paves the way for engineering synthetic condensates precisely positioned in space and time.


Assuntos
Condensados Biomoleculares/química , Linhagem Celular Tumoral , Feminino , Humanos , Cinética , Termodinâmica
15.
Nature ; 581(7807): 209-214, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32405004

RESUMO

Intracellular bodies such as nucleoli, Cajal bodies and various signalling assemblies represent membraneless organelles, or condensates, that form via liquid-liquid phase separation (LLPS)1,2. Biomolecular interactions-particularly homotypic interactions mediated by self-associating intrinsically disordered protein regions-are thought to underlie the thermodynamic driving forces for LLPS, forming condensates that can facilitate the assembly and processing of biochemically active complexes, such as ribosomal subunits within the nucleolus. Simplified model systems3-6 have led to the concept that a single fixed saturation concentration is a defining feature of endogenous LLPS7-9, and has been suggested as a mechanism for intracellular concentration buffering2,7,8,10. However, the assumption of a fixed saturation concentration remains largely untested within living cells, in which the richly multicomponent nature of condensates could complicate this simple picture. Here we show that heterotypic multicomponent interactions dominate endogenous LLPS, and give rise to nucleoli and other condensates that do not exhibit a fixed saturation concentration. As the concentration of individual components is varied, their partition coefficients change in a manner that can be used to determine the thermodynamic free energies that underlie LLPS. We find that heterotypic interactions among protein and RNA components stabilize various archetypal intracellular condensates-including the nucleolus, Cajal bodies, stress granules and P-bodies-implying that the composition of condensates is finely tuned by the thermodynamics of the underlying biomolecular interaction network. In the context of RNA-processing condensates such as the nucleolus, this manifests in the selective exclusion of fully assembled ribonucleoprotein complexes, providing a thermodynamic basis for vectorial ribosomal RNA flux out of the nucleolus. This methodology is conceptually straightforward and readily implemented, and can be broadly used to extract thermodynamic parameters from microscopy images. These approaches pave the way for a deeper understanding of the thermodynamics of multicomponent intracellular phase behaviour and its interplay with the nonequilibrium activity that is characteristic of endogenous condensates.


Assuntos
Espaço Intracelular/química , Espaço Intracelular/metabolismo , Organelas/química , Organelas/metabolismo , Termodinâmica , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Corpos Enovelados/química , Corpos Enovelados/metabolismo , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/deficiência , Células HeLa , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleofosmina , Transição de Fase , Proteínas de Ligação a Poli-ADP-Ribose/deficiência , RNA Helicases/deficiência , Proteínas com Motivo de Reconhecimento de RNA/deficiência , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA , Ribossomos/química , Ribossomos/metabolismo
16.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591689

RESUMO

Phase separation of biomolecules can facilitate their spatiotemporally regulated self-assembly within living cells. Due to the selective yet dynamic exchange of biomolecules across condensate interfaces, condensates can function as reactive hubs by concentrating enzymatic components for faster kinetics. The principles governing this dynamic exchange between condensate phases, however, are poorly understood. In this work, we systematically investigate the influence of client-sticker interactions on the exchange dynamics of protein molecules across condensate interfaces. We show that increasing affinity between a model protein scaffold and its client molecules causes the exchange of protein chains between the dilute and dense phases to slow down and that beyond a threshold interaction strength, this slowdown in exchange becomes substantial. Investigating the impact of interaction symmetry, we found that chain exchange dynamics are also considerably slower when client molecules interact equally with different sticky residues in the protein. The slowdown of exchange is due to a sequestration effect, by which there are fewer unbound stickers available at the interface to which dilute phase chains may attach. These findings highlight the fundamental connection between client-scaffold interaction networks and condensate exchange dynamics.


Assuntos
Condensados Biomoleculares , Separação de Fases , Humanos , Cinética , Tensão Superficial
17.
Biophys J ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37837191

RESUMO

Protein aggregates, formed from the assembly of aberrant, misfolded proteins, are a hallmark of neurodegenerative diseases. Disease-associated aggregates such as mutant Huntingtin polyQ inclusions, are typically enriched in p62/SQSTM1, an oligomeric protein that binds to and sequesters aberrant proteins. p62 has been suggested to sequester proteins through formation of liquid-like biomolecular condensates, but the physical mechanisms by which p62 condensates may regulate pathological protein aggregation remain unclear. Here, we use a light-inducible biomimetic condensate system to show that p62 condensates enhance coarsening of mutant polyQ aggregates through interface-mediated sequestration, which accelerates polyQ accumulation into larger aggregates. However, the resulting large aggregates accumulate polyubiquitinated proteins, which depletes free p62, ultimately suppressing further p62 condensation. This dynamic interplay between interface-mediated coarsening of solid aggregates and downstream consequences on the phase behavior of associated regulatory proteins could contribute to the onset and progression of protein aggregation diseases.

18.
Phys Rev Lett ; 131(16): 169901, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925738

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.126.258102.

19.
Mol Cell ; 60(2): 220-30, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26474065

RESUMO

Compartmentalization in cells is central to the spatial and temporal control of biochemistry. In addition to membrane-bound organelles, membrane-less compartments form partitions in cells. Increasing evidence suggests that these compartments assemble through liquid-liquid phase separation. However, the spatiotemporal control of their assembly, and how they maintain distinct functional and physical identities, is poorly understood. We have previously shown an RNA-binding protein with a polyQ-expansion called Whi3 is essential for the spatial patterning of cyclin and formin transcripts in cytosol. Here, we show that specific mRNAs that are known physiological targets of Whi3 drive phase separation. mRNA can alter the viscosity of droplets, their propensity to fuse, and the exchange rates of components with bulk solution. Different mRNAs impart distinct biophysical properties of droplets, indicating mRNA can bring individuality to assemblies. Our findings suggest that mRNAs can encode not only genetic information but also the biophysical properties of phase-separated compartments.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeos/química , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Saccharomycetales/metabolismo , Compartimento Celular , Ciclinas/química , Ciclinas/genética , Ciclinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Expressão Gênica , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Organelas/química , Organelas/metabolismo , Peptídeos/metabolismo , Transição de Fase , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reologia , Saccharomycetales/química , Saccharomycetales/genética
20.
J Biol Chem ; 297(3): 100998, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302807

RESUMO

The microtubule-based mitotic spindle is responsible for equally partitioning the genome during each cell division, and its assembly is executed via several microtubule nucleation pathways. Targeting Protein for XKlp2 (TPX2) stimulates the branching microtubule nucleation pathway, where new microtubules are nucleated from preexisting ones within mitotic or meiotic spindles. TPX2, like other spindle assembly factors, is sequestered by binding to nuclear importins-α/ß until the onset of mitosis, yet the molecular nature of this regulation remains unclear. Here we demonstrate that TPX2 interacts with importins-α/ß with nanomolar affinity in a 1:1:1 monodispersed trimer. We also identify a new nuclear localization sequence in TPX2 that contributes to its high-affinity interaction with importin-α. In addition, we establish that TPX2 interacts with importin-ß via dispersed, weak interactions. We show that interactions of both importin-α and -ß with TPX2 inhibit its ability to undergo phase separation, which was recently shown to enhance the kinetics of branching microtubule nucleation. In summary, our study informs how importins regulate TPX2 to facilitate spindle assembly, and provides novel insight into the functional regulation of protein phase separation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Cromatografia em Gel/métodos , Humanos , Microtúbulos/metabolismo , Sinais de Localização Nuclear , Proteínas Nucleares/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa