Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 635: 552-561, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36608391

RESUMO

Poly(N-isopropylacrylamide) (PNIPAM) microgels and PNIPAM colloidal shells attract continuous strong interest due to their thermoresponsive behavior, as their size and properties can be tuned by temperature. The direct single particle observation and characterization of pure, unlabeled PNIPAM microgels in their native aqueous environment relies on imaging techniques that operate either at interfaces or in cryogenic conditions, thus limiting the observation of their dynamic nature. Liquid Cell (Scanning) Transmission Electron Microscopy (LC-(S) TEM) imaging allows the characterization of materials and dynamic processes such as nanoparticle growth, etching, and diffusion, at nanometric resolution in liquids. Here we show that via a facile post-synthetic in situ polymer labelling step with high-contrast marker core-shell Au@SiO2 nanoparticles (NPs) it is possible to determine the full volume of PNIPAM microgels in water. The labelling allowed for the successful characterization of the thermoresponsive behavior of PNIPAM microgels and core shell silica@PNIPAM hybrid microgels, as well as the co-nonsolvency of PNIPAM in aqueous alcoholic solutions. The interplay between electron beam irradiation and PNIPAM systems in water resulted in irreversible shrinkage due to beam induced water radiolysis products, which in turn also affected the thermoresponsive behavior of PNIPAM. The addition of 2-propanol as radical scavenger improved PNIPAM stability in water under electron beam irradiation.

2.
ACS Appl Nano Mater ; 4(2): 1136-1148, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33763630

RESUMO

The recent development of liquid cell (scanning) transmission electron microscopy (LC-(S)TEM) has opened the unique possibility of studying the chemical behavior of nanomaterials down to the nanoscale in a liquid environment. Here, we show that the chemically induced etching of three different types of silica-based silica nanoparticles can be reliably studied at the single particle level using LC-(S)TEM with a negligible effect of the electron beam, and we demonstrate this method by successfully monitoring the formation of silica-based heterogeneous yolk-shell nanostructures. By scrutinizing the influence of electron beam irradiation, we show that the cumulative electron dose on the imaging area plays a crucial role in the observed damage and needs to be considered during experimental design. Monte-Carlo simulations of the electron trajectories during LC-(S)TEM experiments allowed us to relate the cumulative electron dose to the deposited energy on the particles, which was found to significantly alter the silica network under imaging conditions of nanoparticles. We used these optimized LC-(S)TEM imaging conditions to systematically characterize the wet etching of silica and metal(oxide)-silica core-shell nanoparticles with cores of gold and iron oxide, which are representative of many other core-silica-shell systems. The LC-(S)TEM method reliably reproduced the etching patterns of Stöber, water-in-oil reverse microemulsion (WORM), and amino acid-catalyzed silica particles that were reported before in the literature. Furthermore, we directly visualized the formation of yolk-shell structures from the wet etching of Au@Stöber silica and Fe3O4@WORM silica core-shell nanospheres.

3.
Nanoscale ; 11(12): 5304-5316, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30843546

RESUMO

Insight in the structure of nanoparticle assemblies up to a single particle level is key to understand the collective properties of these assemblies, which critically depend on the individual particle positions and orientations. However, the characterization of large, micron sized assemblies containing small, 10-500 nanometer, sized colloids is highly challenging and cannot easily be done with the conventional light, electron or X-ray microscopy techniques. Here, we demonstrate that focused ion beam-scanning electron microscopy (FIB-SEM) tomography in combination with image processing enables quantitative real-space studies of ordered and disordered particle assemblies too large for conventional transmission electron tomography, containing particles too small for confocal microscopy. First, we demonstrate the high resolution structural analysis of spherical nanoparticle assemblies, containing small anisotropic gold nanoparticles. Herein, FIB-SEM tomography allows the characterization of assembly dimensions which are inaccessible to conventional transmission electron microscopy. Next, we show that FIB-SEM tomography is capable of characterizing much larger ordered and disordered assemblies containing silica colloids with a diameter close to the resolution limit of confocal microscopes. We determined both the position and the orientation of each individual (nano)particle in the assemblies by using recently developed particle tracking routines. Such high precision structural information is essential in the understanding and design of the collective properties of new nanoparticle based materials and processes.

4.
ACS Nano ; 12(12): 12751-12760, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30458110

RESUMO

Ag29 nanoclusters capped with lipoic acid (LA) can be doped with Au. The doped clusters show enhanced stability and increased luminescence efficiency. We attribute the higher quantum yield to an increase in the rate of radiative decay. With mass spectrometry, the Au-doped clusters were found to consist predominantly of Au1Ag28(LA)123-. The clusters were characterized using X-ray absorption spectroscopy at the Au L3-edge. Both the extended absorption fine structure (EXAFS) and the near edge structure (XANES) in combination with electronic structure calculations confirm that the Au dopant is preferentially located in the center of the cluster. A useful XANES spectrum can be recorded for lower concentrations, or in shorter time, than the more commonly used EXAFS. This makes XANES a valuable tool for structural characterization.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa