Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Sci Eng ; 24(1): 78-85, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35582691

RESUMO

In March of 2020, recognizing the potential of High Performance Computing (HPC) to accelerate understanding and the pace of scientific discovery in the fight to stop COVID-19, the HPC community assembled the largest collection of worldwide HPC resources to enable COVID-19 researchers worldwide to advance their critical efforts. Amazingly, the COVID-19 HPC Consortium was formed within one week through the joint effort of the Office of Science and Technology Policy (OSTP), the U.S. Department of Energy (DOE), the National Science Foundation (NSF), and IBM to create a unique public-private partnership between government, industry, and academic leaders. This article is the Consortium's story-how the Consortium was created, its founding members, what it provides, how it works, and its accomplishments. We will reflect on the lessons learned from the creation and operation of the Consortium and describe how the features of the Consortium could be sustained as a National Strategic Computing Reserve to ensure the nation is prepared for future crises.

2.
J Chem Inf Model ; 60(4): 1955-1968, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32243153

RESUMO

One of the key requirements for incorporating machine learning (ML) into the drug discovery process is complete traceability and reproducibility of the model building and evaluation process. With this in mind, we have developed an end-to-end modular and extensible software pipeline for building and sharing ML models that predict key pharma-relevant parameters. The ATOM Modeling PipeLine, or AMPL, extends the functionality of the open source library DeepChem and supports an array of ML and molecular featurization tools. We have benchmarked AMPL on a large collection of pharmaceutical data sets covering a wide range of parameters. Our key findings indicate that traditional molecular fingerprints underperform other feature representation methods. We also find that data set size correlates directly with prediction performance, which points to the need to expand public data sets. Uncertainty quantification can help predict model error, but correlation with error varies considerably between data sets and model types. Our findings point to the need for an extensible pipeline that can be shared to make model building more widely accessible and reproducible. This software is open source and available at: https://github.com/ATOMconsortium/AMPL.


Assuntos
Descoberta de Drogas , Software , Aprendizado de Máquina , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa