Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
RNA ; 29(5): 609-619, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36754578

RESUMO

Eukaryotic mRNAs are modified at the 5' end with a methylated guanosine (m7G) that is attached to the transcription start site (TSS) nucleotide. The TSS nucleotide is 2'-O-methylated (Nm) by CMTR1 in organisms ranging from insects to human. In mammals, the TSS adenosine can be further N 6 -methylated by RNA polymerase II phosphorylated CTD-interacting factor 1 (PCIF1) to create m6Am. Curiously, the fly ortholog of mammalian PCIF1 is demonstrated to be catalytic-dead, and its functions are not known. Here, we show that Pcif1 mutant flies display a reduced fertility which is particularly marked in females. Deep sequencing analysis of Pcif1 mutant ovaries revealed transcriptome changes with a notable increase in expression of genes belonging to the mitochondrial ATP synthetase complex. Furthermore, the Pcif1 protein is distributed along euchromatic regions of polytene chromosomes, and the Pcif1 mutation behaved as a modifier of position-effect-variegation (PEV) suppressing the heterochromatin-dependent silencing of the white gene. Similar or stronger changes in the transcriptome and PEV phenotype were observed in flies that expressed a cytosolic version of Pcif1. These results point to a nuclear cotranscriptional gene regulatory role for the catalytic-dead fly Pcif1 that is probably based on its conserved ability to interact with the RNA polymerase II carboxy-terminal domain.


Assuntos
Drosophila , RNA Polimerase II , Feminino , Animais , Humanos , Drosophila/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fertilidade/genética , Transcriptoma , Nucleotídeos/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mamíferos/genética , Proteínas Nucleares/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
2.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008525

RESUMO

Oxaliplatin, the first-line chemotherapeutic agent against colorectal cancer (CRC), induces peripheral neuropathies, which can lead to dose limitation and treatment discontinuation. Downregulation of potassium channels, which involves histone deacetylase (HDAC) activity, has been identified as an important tuner of acute oxaliplatin-induced hypersensitivity. MS-275, a class I histone deacetylase inhibitor (HDACi), prevents acute oxaliplatin-induced peripheral neuropathy (OIPN). Moreover, MS-275 exerts anti-tumor activity in several types of cancers, including CRC. We thus hypothesized that MS-275 could exert both a preventive effect against OIPN and potentially a synergistic effect combined with oxaliplatin against CRC development. We first used RNAseq to assess transcriptional changes occurring in DRG neurons from mice treated by repeated injection of oxaliplatin. Moreover, we assessed the effects of MS-275 on chronic oxaliplatin-induced peripheral neuropathy development in vivo on APCMin/+ mice and on cancer progression when combined with oxaliplatin, both in vivo on APCMin/+ mice and in a mouse model of an orthotopic allograft of the CT26 cell line as well as in vitro in T84 and HT29 human CRC cell lines. We found 741 differentially expressed genes (DEGs) between oxaliplatin- and vehicle-treated animals. While acute OIPN is known as a channelopathy involving HDAC activity, chronic OIPN exerts weak ion channel transcriptional changes and no HDAC expression changes in peripheral neurons from OIPN mice. However, MS-275 prevents the development of sensory neuropathic symptoms induced by repeated oxaliplatin administration in APCMin/+ mice. Moreover, combined with oxaliplatin, MS-275 also exerts synergistic antiproliferative and increased survival effects in CT26-bearing mice. Consistently, combined drug associations exert synergic apoptotic and cell death effects in both T84 and HT29 human CRC cell lines. Our results strongly suggest combining oxaliplatin and MS-275 administration in CRC patients in order to potentiate the antiproliferative action of chemotherapy, while preventing its neurotoxic effect.


Assuntos
Benzamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Oxaliplatina/farmacologia , Piridinas/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
3.
Nucleic Acids Res ; 46(19): 10052-10065, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30113668

RESUMO

Transposable elements (TEs) have invaded most genomes and constitute up to 50% of the human genome. Machinery based on small non-coding piRNAs has evolved to inhibit their expression at the transcriptional and post-transcriptional levels. Surprisingly, this machinery is weakened during specific windows of time in mice, flies or plants, allowing the expression of TEs in germline cells. The function of this de-repression remains unknown. In Drosophila, we have previously shown that this developmental window is characterized by a reduction of Piwi expression in dividing germ cells. Here, we show that the unique knock-down of Aub in these cells leads to female sterility. It correlates with defects in piRNA amplification, an increased Piwi expression and an increased silencing of transcriptionally silenced TEs. These defects are similar to those observed when Aub is depleted in the whole germline which underlies the crucial role of this developmental window for both oogenesis and TE silencing. We further show that, with age, some fertility is recovered which is concomitant to a decrease of Piwi and TE silencing. These data pinpoint the Pilp as a tremendously important step for female fertility and genome stability. They further show that such a restricted developmental niche of germ cells may sense environmental changes, such as aging, to protect the germline all along the life.


Assuntos
Proteínas Argonautas/genética , Elementos de DNA Transponíveis , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genoma de Inseto , Fatores de Iniciação de Peptídeos/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Proteínas Argonautas/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Infertilidade Feminina/genética , Oogênese/genética , Óvulo/citologia , Óvulo/crescimento & desenvolvimento , Óvulo/metabolismo , Fatores de Iniciação de Peptídeos/deficiência , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
5.
EMBO Rep ; 15(4): 411-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24562610

RESUMO

In Drosophila, the piRNA cluster, flamenco, produces most of the piRNAs (PIWI-interacting RNAs) that silence transposable elements in the somatic follicle cells during oogenesis. These piRNAs are thought to be processed from a long single-stranded precursor transcript. Here, we demonstrate that flamenco transcription is initiated from an RNA polymerase II promoter containing an initiator motif (Inr) and downstream promoter element (DPE) and requires the transcription factor, Cubitus interruptus. We show that the flamenco precursor transcript undergoes differential alternative splicing to generate diverse RNA precursors that are processed to piRNAs. Our data reveal dynamic processing steps giving rise to piRNA cluster precursors.


Assuntos
Drosophila melanogaster/genética , RNA Interferente Pequeno/genética , Transcrição Gênica , Processamento Alternativo , Animais , Caderinas/genética , Células Cultivadas , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Feminino , Família Multigênica , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , RNA Polimerase II/fisiologia , Splicing de RNA , Fatores de Transcrição/fisiologia
6.
Nucleic Acids Res ; 42(4): 2512-24, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24288375

RESUMO

During Drosophila oogenesis, transposable element (TE) repression involves the Piwi-interacting RNA (piRNA) pathway which ensures genome integrity for the next generation. We developed a transgenic model to study repression of the Idefix retrotransposon in the germline. Using a candidate gene KD-approach, we identified differences in the spatio-temporal requirements of the piRNA pathway components for piRNA-mediated silencing. Some of them (Aub, Vasa, Spn-E) are necessary in very early stages of oogenesis within the germarium and appear to be less important for efficient TE silencing thereafter. Others (Piwi, Ago3, Mael) are required at all stages of oogenesis. Moreover, during early oogenesis, in the dividing cysts within the germarium, Idefix anti-sense transgenes escape host control, and this is associated with very low piwi expression. Silencing of P-element-based transgenes is also strongly weakened in these cysts. This region, termed the 'Piwiless pocket' or Pilp, may ensure that new TE insertions occur and are transmitted to the next generation, thereby contributing to genome dynamics. In contrast, piRNA-mediated silencing is strong in germline stem cells in which TE mobilization is tightly repressed ensuring the continued production of viable germline cysts.


Assuntos
Drosophila/genética , Inativação Gênica , Oogênese/genética , RNA Interferente Pequeno/metabolismo , Retroelementos , Animais , Proteínas Argonautas/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Mutação , Transgenes
7.
Nature ; 453(7197): 948-51, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18463634

RESUMO

The architecture of human chromosomes in interphase nuclei is still largely unknown. Microscopy studies have indicated that specific regions of chromosomes are located in close proximity to the nuclear lamina (NL). This has led to the idea that certain genomic elements may be attached to the NL, which may contribute to the spatial organization of chromosomes inside the nucleus. However, sequences in the human genome that interact with the NL in vivo have not been identified. Here we construct a high-resolution map of the interaction sites of the entire genome with NL components in human fibroblasts. This map shows that genome-lamina interactions occur through more than 1,300 sharply defined large domains 0.1-10 megabases in size. These lamina-associated domains (LADs) are typified by low gene-expression levels, indicating that LADs represent a repressive chromatin environment. The borders of LADs are demarcated by the insulator protein CTCF, by promoters that are oriented away from LADs, or by CpG islands, suggesting possible mechanisms of LAD confinement. Taken together, these results demonstrate that the human genome is divided into large, discrete domains that are units of chromosome organization within the nucleus.


Assuntos
Posicionamento Cromossômico , Cromossomos Humanos/metabolismo , Lâmina Nuclear/metabolismo , Fator de Ligação a CCCTC , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Cromossomos Humanos/genética , Ilhas de CpG/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos , Genoma Humano , Humanos , Lamina Tipo B/metabolismo , Lâmina Nuclear/química , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Repressoras/metabolismo
8.
Nat Commun ; 14(1): 6096, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773253

RESUMO

Most Drosophila transposable elements are LTR retrotransposons, some of which belong to the genus Errantivirus and share structural and functional characteristics with vertebrate endogenous retroviruses. Like endogenous retroviruses, it is unclear whether errantiviruses retain some infectivity and transposition capacity. We created conditions where control of the Drosophila ZAM errantivirus through the piRNA pathway was abolished leading to its de novo reactivation in somatic gonadal cells. After reactivation, ZAM invaded the oocytes and severe fertility defects were observed. While ZAM expression persists in the somatic gonadal cells, the germline then set up its own adaptive genomic immune response by producing piRNAs against the constantly invading errantivirus, restricting invasion. Our results suggest that although errantiviruses are continuously repressed by the piRNA pathway, they may retain their ability to infect the germline and transpose, thus allowing them to efficiently invade the germline if they are expressed.


Assuntos
Proteínas de Drosophila , Retrovirus Endógenos , Animais , Feminino , Drosophila/genética , Drosophila/metabolismo , Ovário/metabolismo , Drosophila melanogaster/genética , Células Germinativas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Elementos de DNA Transponíveis/genética
9.
Sci Adv ; 9(14): eade3872, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027460

RESUMO

Genome integrity of the animal germline is protected from transposable element activity by PIWI-interacting RNAs (piRNAs). While piRNA biogenesis is intensively explored, little is known about the genetical determination of piRNA clusters, the genomic sources of piRNAs. Using a bimodal epigenetic state piRNA cluster (BX2), we identified the histone demethylase Kdm3 as being able to prevent a cryptic piRNA production. In the absence of Kdm3, dozens of coding gene-containing regions become genuine germline dual-strand piRNA clusters. Eggs laid by Kdm3 mutant females show developmental defects phenocopying loss of function of genes embedded into the additional piRNA clusters, suggesting an inheritance of functional ovarian "auto-immune" piRNAs. Antagonizing piRNA cluster determination through chromatin modifications appears crucial to prevent auto-immune genic piRNAs production.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Feminino , Drosophila/genética , Drosophila/metabolismo , RNA de Interação com Piwi , RNA Interferente Pequeno/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos de DNA Transponíveis/genética
11.
Biology (Basel) ; 11(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35625438

RESUMO

Transposable elements (TEs) are mobile DNA sequences that can jump from one genomic locus to another and that have colonized the genomes of all living organisms. TE mobilization and accumulation are an important source of genomic innovations that greatly contribute to the host species evolution. To ensure their maintenance and amplification, TE transposition must occur in the germ cell genome. As TE transposition is also a major threat to genome integrity, the outcome of TE mobility in germ cell genomes could be highly dangerous because such mutations are inheritable. Thus, organisms have developed specialized strategies to protect the genome integrity from TE transposition, particularly in germ cells. Such effective TE silencing, together with ongoing mutations and negative selection, should result in the complete elimination of functional TEs from genomes. However, TEs have developed efficient strategies for their maintenance and spreading in populations, particularly by using horizontal transfer to invade the genome of novel species. Here, we discuss how TEs manage to bypass the host's silencing machineries to propagate in its genome and how hosts engage in a fightback against TE invasion and propagation. This shows how TEs and their hosts have been evolving together to achieve a fine balance between transposition and repression.

12.
FASEB J ; 23(5): 1482-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19141532

RESUMO

Combining genome sequence analysis and functional analysis, we show that some full-length copies of tirant are present in heterochromatic regions in Drosophila simulans and that when tested in vitro, these copies have a functional promoter. However, when inserted in heterochromatic regions, tirant copies are inactive in vivo, and only transcription of euchromatic copies can be detected. Thus, our data indicate that the localization of the element is a hallmark of its activity in vivo and raise the question of genomic invasions by transposable elements and the importance of their genomic integration sites.


Assuntos
Drosophila/genética , Genoma de Inseto , Retroelementos , Sequências Repetidas Terminais , Animais
13.
Cells ; 9(4)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290057

RESUMO

Transgenes containing a fragment of the I retrotransposon represent a powerful model of piRNA cluster de novo formation in the Drosophila germline. We revealed that the same transgenes located at different genomic loci form piRNA clusters with various capacity of small RNA production. Transgenic piRNA clusters are not established in piRNA pathway mutants. However, in the wild-type context, the endogenous ancestral I-related piRNAs heterochromatinize and convert the I-containing transgenes into piRNA-producing loci. Here, we address how the quantitative level of piRNAs influences the heterochromatinization and piRNA production. We show that a minimal amount of maternal piRNAs from ancestral I-elements is sufficient to form the transgenic piRNA clusters. Supplemental piRNAs stemming from active I-element copies do not stimulate additional chromatin changes or piRNA production from transgenes. Therefore, chromatin changes and piRNA production are initiated by a minimum threshold level of complementary piRNAs, suggesting a selective advantage of prompt cell response to the lowest level of piRNAs. It is noteworthy that the weak piRNA clusters do not transform into strong ones after being targeted by abundant I-specific piRNAs, indicating the importance of the genomic context for piRNA cluster establishment. Analysis of ovarian transcription profiles suggests that regions facilitating convergent transcription favor the formation of transgenic piRNA clusters.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , RNA/biossíntese , RNA/genética , Animais , Proteínas Argonautas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Epigênese Genética , Células Germinativas , Heterocromatina/genética , Heterocromatina/metabolismo , RNA/metabolismo , Retroelementos , Transgenes
14.
Cells ; 9(6)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570966

RESUMO

PIWI-interacting RNAs (piRNAs) target transcripts by sequence complementarity serving as guides for RNA slicing in animal germ cells. The piRNA pathway is increasingly recognized as critical for essential cellular functions such as germline development and reproduction. In the Anopheles gambiae ovary, as much as 11% of piRNAs map to protein-coding genes. Here, we show that ovarian mRNAs and long non-coding RNAs (lncRNAs) are processed into piRNAs that can direct other transcripts into the piRNA biogenesis pathway. Targeting piRNAs fuel transcripts either into the ping-pong cycle of piRNA amplification or into the machinery of phased piRNA biogenesis, thereby creating networks of inter-regulating transcripts. RNAs of the same network share related genomic repeats. These repeats give rise to piRNAs, which target other transcripts and lead to a cascade of concerted RNA slicing. While ping-pong networks are based on repeats of several hundred nucleotides, networks that rely on phased piRNA biogenesis operate through short ~40-nucleotides long repeats, which we named snetDNAs. Interestingly, snetDNAs are recurring in evolution from insects to mammals. Our study brings to light a new type of conserved regulatory pathway, the snetDNA-pathway, by which short sequences can include independent genes and lncRNAs in the same biological pathway.


Assuntos
Anopheles/genética , Anopheles/metabolismo , RNA Longo não Codificante/genética , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Aedes/genética , Aedes/metabolismo , Animais , Sequência Consenso , Sequência Conservada , DNA/genética , Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Evolução Molecular , Feminino , Redes Reguladoras de Genes , Genes de Insetos , Genoma de Inseto , Humanos , Masculino , Camundongos , Anotação de Sequência Molecular , Ovário/metabolismo , Sequências Repetitivas de Ácido Nucleico , Testículo/metabolismo
15.
Mob DNA ; 10: 28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312260

RESUMO

BACKGROUND: PIWI-interacting RNAs (piRNAs) are the effectors of transposable element silencing in the reproductive apparatus. In Drosophila ovarian somatic cells, piRNAs arise from long RNA precursors presumably processed within cytoplasmic Yb-bodies. RESULTS: Here we show that the nucleo-cytoplasmic traffic of piRNA precursors encoded by the flamenco locus is subjected to a spatio-temporal regulation. Precursor RNAs first gather in a single nuclear focus, Dot COM, close to the nuclear periphery, and transit through the membrane before being delivered to the cytoplasmic Yb-bodies. Early in oogenesis, flamenco transcripts are rapidly transferred to the cytoplasm making their initial nuclear gathering in Dot COM too transient to be visualized. As oogenesis proceeds, the cytoplasmic delivery steadily decreases concomitantly with the decrease in the protein levels of Armi and Yb, two components of the Yb-bodies. Both events lead to a reduction of Yb-body assembly in late stages of oogenesis, which likely results in a drop in piRNA production. CONCLUSION: Our findings show a spatio-temporal regulation of the piRNA biogenesis in the follicle cells of Drosophila ovaries, that involves coordinated control of both piRNA precursors and components of the piRNA processing machinery. This newly unveiled regulation establishes another level of complexity in the production of piRNAs and suggests a stage-dependent involvement of the piRNA biogenesis in the mechanism of transposable elements silencing along oogenesis.

16.
Elife ; 82019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875295

RESUMO

Transposable element (TE) activity is repressed in animal gonads by PIWI-interacting RNAs (piRNAs) produced by piRNA clusters. Current models in flies propose that germinal piRNA clusters are functionally defined by the maternal inheritance of piRNAs produced during the previous generation. Taking advantage of an inactive, but ready to go, cluster of P-element derived transgene insertions in Drosophila melanogaster, we show here that raising flies at high temperature (29°C) instead of 25°C triggers the stable conversion of this locus from inactive into actively producing functional piRNAs. The increase of antisense transcripts from the cluster at 29°C combined with the requirement of transcription of euchromatic homologous sequences, suggests a role of double stranded RNA in the production of de novo piRNAs. This report describes the first case of the establishment of an active piRNA cluster by environmental changes in the absence of maternal inheritance of homologous piRNAs. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/efeitos da radiação , Exposição Ambiental , Epigênese Genética , RNA Interferente Pequeno/metabolismo , Temperatura , Animais , Perfilação da Expressão Gênica
17.
Genome Biol ; 20(1): 127, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227013

RESUMO

BACKGROUND: For species survival, the germline must faithfully transmit genetic information to the progeny. Transposable elements (TEs) constitute a significant threat to genome stability due to their mobility. In the metazoan germline, their mobilization is limited by a class of small RNAs called PIWI-interacting RNAs (piRNAs) produced by dedicated genomic loci called piRNA clusters. Although the piRNA pathway is an adaptive genomic immunity system, it remains unclear how the germline gains protection from a new transposon invasion. RESULTS: To address this question, we analyze Drosophila melanogaster lines harboring a deletion within flamenco, a major piRNA cluster specifically expressed in somatic follicular cells. This deletion leads to derepression of the retrotransposon ZAM in the somatic follicular cells and subsequent germline genome invasion. In this mutant line, we identify de novo production of sense and antisense ZAM-derived piRNAs that display a germinal molecular signature. These piRNAs originated from a new ZAM insertion into a germline dual-strand piRNA cluster and silence ZAM expression specifically in germ cells. Finally, we find that ZAM trapping in a germinal piRNA cluster is a frequent event that occurs early during the isolation of the mutant line. CONCLUSIONS: Transposons can hijack the host developmental process to propagate whenever their silencing is lost. Here, we show that the germline can protect itself by trapping invading somatic-specific TEs into germline piRNA clusters. This is the first demonstration of "auto-immunization" of a germline endangered by mobilization of a surrounding somatic TE.


Assuntos
RNA Interferente Pequeno/metabolismo , Retroelementos , Animais , Drosophila melanogaster , Feminino , Ovário/metabolismo
18.
Mob DNA ; 9: 25, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30079119

RESUMO

BACKGROUND: The field of small RNA is one of the most investigated research areas since they were shown to regulate transposable elements and gene expression and play essential roles in fundamental biological processes. Small RNA deep sequencing (sRNA-seq) is now routinely used for large-scale analyses of small RNA. Such high-throughput sequencing typically produces several millions reads. RESULTS: Here we present a computational pipeline (sRNAPipe: small RNA pipeline) based on the Galaxy framework that takes as input a fastq file of small RNA-seq reads and performs successive steps of mapping to categories of genomic sequences: transposable elements, gene transcripts, microRNAs, small nuclear RNAs, ribosomal RNAs and transfer RNAs. It also provides individual mapping and counting for chromosomes, transposable elements and gene transcripts, normalization, small RNA length analysis and plotting of the data along genomic coordinates to build publication-quality graphs and figures. sRNAPipe evaluates 10-nucleotide 5'-overlaps of reads on opposite strands to test ping-pong amplification for putative PIWI-interacting RNAs, providing counts of overlaps and corresponding z-scores. CONCLUSIONS: sRNAPipe is easy to use and does not require command-line or coding knowledge. This pipeline gives quick visual and quantitative results, which are usable for publications. sRNAPipe is freely available as a Galaxy tool and via GitHub.

19.
Nat Commun ; 7: 13739, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929060

RESUMO

PIWI-interacting RNAs (piRNAs) are effectors of transposable element (TE) silencing in the reproductive apparatus. In Drosophila ovarian somatic cells, piRNAs arise from longer single-stranded RNA precursors that are processed in the cytoplasm presumably within the Yb-bodies. piRNA precursors encoded by the flamenco (flam) piRNA cluster accumulate in a single focus away from their sites of transcription. In this study, we identify the exportin complex containing Nxf1 and Nxt1 as required for flam precursor nuclear export. Together with components of the exon junction complex (EJC), it is necessary for the efficient transfer of flam precursors away from their site of transcription. Indeed, depletion of these components greatly affects flam intra-nuclear transit. Moreover, we show that Yb-body assembly is dependent on the nucleo-cytoplasmic export of flam transcripts. These results suggest that somatic piRNA precursors are thus required for the assembly of the cytoplasmic transposon silencing machinery.


Assuntos
Citoplasma/metabolismo , Drosophila melanogaster/metabolismo , Éxons/genética , Precursores de RNA/metabolismo , RNA Interferente Pequeno/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Feminino , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Processamento Pós-Transcricional do RNA/genética , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-26617674

RESUMO

BACKGROUND: Specific genomic loci, termed Piwi-interacting RNA (piRNA) clusters, manufacture piRNAs that serve as guides for the inactivation of complementary transposable elements (TEs). The piRNA pathway has been accurately detailed in Drosophila melanogaster, while it remains poorly examined in other insects. This pathway is increasingly recognized as critical for germline development and reproduction. Understanding of the piRNA functions in mosquitoes could offer an opportunity for disease vector control by the reduction of their reproductive potential. RESULTS: To analyze the similarities and differences in this pathway between Drosophila and mosquito, we performed an in-depth analysis of the genomic loci producing piRNAs and their targets in the African malaria vector Anopheles gambiae. We identified 187 piRNA clusters in the An. gambiae genome and 155 piRNA clusters in the D. melanogaster genome. We demonstrate that many more piRNA clusters in the mosquito compared with the fruit fly are uni-directionally transcribed and are located outside pericentromeric heterochromatin. About 11 % of the An. gambiae piRNA population map to gene transcripts. This is a noticeable increase compared with the ~6 % of the piRNA population mapped to genes in D. melanogaster. A subset of the piRNA-enriched genes in An. gambiae has functions related to reproduction and development. At least 24 and 65 % of the mapped piRNAs correspond to genomic TE sequences in An. gambiae and D. melanogaster, respectively. DNA transposons and non-LTR retrotransposons are more abundant in An. gambiae, while LTR retrotransposons are more abundant in D. melanogaster. Yet, piRNAs predominantly target LTR retrotransposons in both species, which may point to a distinct feature of these elements compared to the other classes of TEs concerning their silencing by the piRNA pathway. CONCLUSIONS: Here, we demonstrate that piRNA-producing loci have more ubiquitous distribution in the An. gambiae genome than in the genome of D. melanogaster. Also, protein-coding genes have an increased role in production of piRNAs in the germline of this mosquito. Genes involved in germline and embryonic development of An. gambiae generate a substantial portion of piRNAs, suggesting a role of the piRNA pathway in the epigenetic regulation of the reproductive processes in the African malaria vector.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa