RESUMO
Systemic therapies targeting transforming growth factor beta (TGFß) or TGFßR1 kinase (ALK5) have been plagued by toxicities including cardiac valvulopathy and bone physeal dysplasia in animals, posing a significant challenge for clinical development in pulmonary indications. The current work aims to demonstrate that systemic ALK5-associated toxicities can be mitigated through localized lung delivery. Lung-selective (THRX-144644) and systemically bioavailable (galunisertib) ALK5 inhibitors were compared to determine whether lung selectivity is sufficient to maintain local tissue concentrations while mitigating systemic exposure and consequent pathway-related findings. Both molecules demonstrated potent ALK5 activity in rat precision cut lung slices (PCLS; p-SMAD3 half-maximal inhibitory concentration [IC50], 141 nM and 1070 nM for THRX-144644 and galunisertib, respectively). In 14-day repeat-dose studies in rats, dose-related cardiac valvulopathy was recapitulated with oral galunisertib at doses ≥150 mg/kg/day. In contrast, inhaled nebulized THRX-144644 did not cause similar systemic findings up to the maximally tolerated doses in rats or dogs (10 and 1.5 mg/kg/day, respectively). THRX-144644 lung-to-plasma ratios ranged from 100- to 1200-fold in rats and dogs across dose levels. THRX-144644 lung trough (24 h) concentrations in rats and dogs ranged from 3- to 17-fold above the PCLS IC50 across tolerated doses. At a dose level exceeding tolerability (60 mg/kg/day; 76-fold above PCLS IC50) minimal heart and bone changes were observed when systemic drug concentrations reached pharmacologic levels. In conclusion, the current preclinical work demonstrates that localized pulmonary delivery of an ALK5 inhibitor leads to favorable TGFß pathway pharmacodynamic inhibition in lung while minimizing key systemic toxicities.
Assuntos
Pulmão/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Administração Oral , Animais , Cães , Feminino , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pirazóis/toxicidade , Quinolinas/toxicidade , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismoRESUMO
Aberrant hedgehog (Hh) pathway signaling is implicated in multiple cancer types and targeting the Smoothened (SMO) receptor, a key protein of the Hh pathway, has proven effective in treating metastasized basal cell carcinoma. Our lead optimization effort focused on a series of heteroarylamides. We observed that a methyl substitution ortho to the heteroaryl groups on an aniline core significantly improved the potency of this series of compounds. These findings predated the availability of SMO crystal structure in 2013. Here we retrospectively applied quantum mechanics calculations to demonstrate the o-Me substitution favors the bioactive conformation by inducing a dihedral twist between the heteroaryl rings and the core aniline. The o-Me also makes favorable hydrophobic interactions with key residue side chains in the binding pocket. From this effort, two compounds (AZD8542 and AZD7254) showed excellent pharmacokinetics across multiple preclinical species and demonstrated in vivo activity in abrogating the Hh paracrine pathway as well as anti- tumor effects.
Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Descoberta de Drogas , Imidazóis/farmacologia , Receptor Smoothened/antagonistas & inibidores , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Benzamidas/síntese química , Benzamidas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/síntese química , Imidazóis/química , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , Receptor Smoothened/metabolismo , Relação Estrutura-Atividade , Proteína GLI1 em Dedos de Zinco/metabolismoRESUMO
Aliphatic nitrogen heterocycles such as piperazine, piperidine, pyrrolidine, morpholine, aziridine, azetidine, and azepane are well known building blocks in drug design and important core structures in approved drug therapies. These core units have been targets for metabolic attack by P450s and other drug metabolizing enzymes such as aldehyde oxidase and monoamine oxidase (MAOs). The electron rich nitrogen and/or α-carbons are often major sites of metabolism of alicyclic amines. The most common biotransformations include N-oxidation, N-conjugation, oxidative N-dealkylation, ring oxidation, and ring opening. In some instances, the metabolic pathways generate electrophilic reactive intermediates and cause bioactivation. However, potential bioactivation related adverse events can be attenuated by structural modifications. Hence it is important to understand the biotransformation pathways to design stable drug candidates that are devoid of metabolic liabilities early in the discovery stage. The current review provides a comprehensive summary of biotransformation and bioactivation pathways of aliphatic nitrogen containing heterocycles and strategies to mitigate metabolic liabilities.
Assuntos
Aminas/metabolismo , Biotransformação/fisiologia , Preparações Farmacêuticas/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Inativação Metabólica/fisiologiaRESUMO
Comprehensive structure activity relationship (SAR) studies were conducted on a focused screening hit, 2-(methylthio)-3-(phenylsulfonyl)-4H-pyrido[1,2-a]pyrimidin-4-imine (1, IC50: 4.0 nM), as 5-HT6 selective antagonists. Activity was improved some 2-4 fold when small, electron-donating groups were added to the central core as observed in 19, 20 and 26. Molecular docking of key compounds in a homology model of the human 5-HT6 receptor was used to rationalize our structure-activity relationship (SAR) findings. In pharmacokinetic experiments, compound 1 displayed good brain uptake in rats following intra-peritoneal administration, but limited oral bioavailability.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Iminas/farmacocinética , Receptores de Serotonina/uso terapêutico , Animais , Humanos , Iminas/farmacologia , Simulação de Acoplamento Molecular , Ratos , Relação Estrutura-AtividadeRESUMO
The high rate of attrition during drug development and its associated high research and development (R&D) cost have put pressure on pharmaceutical companies to ensure that candidate drugs going to clinical testing have the appropriate quality such that the biological hypothesis could be evaluated. To help achieve this ambition, drug metabolism and pharmacokinetic (DMPK) science and increasing investment have been deployed earlier in the R&D process. To gain maximum return on investment, it is essential that DMPK concepts are both appropriately integrated into the compound design process and that compound selection is focused on accurate prediction of likely outcomes in patients. This article describes key principles that underpin the contribution of DMPK science for small-molecule research based on 15 years of discovery support in a major pharmaceutical company. It does not aim to describe the breadth and depth of DMPK science, but more the practical application for decision making in real-world situations.
Assuntos
Indústria Farmacêutica/métodos , Drogas em Investigação/farmacocinética , Animais , Tomada de Decisões Gerenciais , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Drogas em Investigação/efeitos adversos , Drogas em Investigação/metabolismo , Drogas em Investigação/farmacologia , Humanos , Inativação Metabólica , Taxa de Depuração MetabólicaRESUMO
Checkpoint kinase 1 (Chk1, CHEK1) is a Ser/Thr protein kinase that plays a key role in mediating the cellular response to DNA-damage. Synthesis and evaluation of a previously described class of Chk1 inhibitors, triazoloquinolones/triazolones (TZs) is further described herein. Our investigation of structure-activity relationships led to the identification of potent inhibitors 14c, 14h and 16e. Key challenges included modulation of physicochemical properties and pharmacokinetic (PK) parameters to enable compound testing in a Chk1 specific hollow fiber pharmacodynamic model. In this model, 16e was shown to abrogate topotecan-induced cell cycle arrest in a dose dependent manner. The demonstrated activity of TZs in this model in combination with a chemotherapeutic agent as well as radiotherapy validates this series of Chk1 inhibitors. X-ray crystal structures (PDB code: 2YEX and 2YER) for an initial lead and an optimized analog are also presented.
Assuntos
Antineoplásicos/síntese química , Neoplasias do Colo/terapia , Inibidores de Proteínas Quinases/síntese química , Proteínas Quinases/metabolismo , Triazóis/síntese química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Neoplasias do Colo/enzimologia , Terapia Combinada , Cristalografia por Raios X , Dano ao DNA , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Nus , Modelos Moleculares , Conformação Proteica , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Relação Estrutura-Atividade , Topotecan/farmacologia , Triazóis/farmacocinética , Triazóis/uso terapêutico , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Cell-based subset screening of compounds using a Gli transcription factor reporter cell assay and shh stimulated cell differentiation assay identified a series of bisamide compounds as hedgehog pathway inhibitors with good potency. Using a ligand-based optimization strategy, heteroaryl groups were utilized as conformationally restricted amide isosteres replacing one of the amides which significantly increased their potency against SMO and the hedgehog pathway while decreasing activity against p38α kinase. We report herein the identification of advanced lead compounds such as imidazole 11c and 11f encompassing good p38α selectivity, low nanomolar potency in both cell assays, excellent physiochemical properties and in vivo pharmacokinetics.
Assuntos
Amidas/química , Proteínas Hedgehog/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Amidas/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos , Camundongos , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-AtividadeRESUMO
Izencitinib (TD-1473), an oral, gut-selective pan-Janus kinase (JAK) inhibitor under investigation for treatment of inflammatory bowel diseases, was designed for optimal efficacy in the gastrointestinal tract while minimizing systemic exposures and JAK-related safety findings. The nonclinical safety of izencitinib was evaluated in rat and dog repeat-dose and rat and rabbit reproductive and developmental toxicity studies. Systemic exposures were compared with JAK inhibitory potency to determine effects at or above pharmacologic plasma concentrations (≥1× plasma average plasma concentration [Cave]:JAK 50% inhibitory concentration [IC50] ratio). In rats and dogs, 1000 and 30 mg/kg/day izencitinib, respectively, produced minimal systemic findings (ie, red/white cell changes) and low systemic concentrations (approximately 1× plasma Cave:JAK IC50 ratio) with an 8× nonclinical:clinical systemic area under the curve (AUC) margin compared with exposures at the highest clinically tested dose (300 mg, quaque die, once daily, phase 1 study in healthy volunteers). In dogs, it was possible to attain sufficient systemic exposures to result in immunosuppression characteristic of systemic JAK inhibition, but at high AUC margins (43×) compared with systemic exposures observed at the highest tested dose in humans. No adverse findings were observed in the gastrointestinal tract or systemic tissues. Izencitinib did not affect male or female fertility. Izencitinib did not affect embryonic development in rats and rabbits as commonly reported with systemic JAK inhibition, consistent with low maternal systemic concentrations (2-6× plasma Cave:JAK IC50 ratio, 10-33× nonclinical:clinical AUC margin) and negligible fetal exposures. In conclusion, the izencitinib gut-selective approach resulted in minimal systemic findings in nonclinical species at pharmacologic, clinically relevant systemic exposures, highlighting the impact of organ-selectivity in reducing systemic safety findings.
Assuntos
Janus Quinases , Naftiridinas , Nitrilas , Administração Oral , Animais , Cães , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Humanos , Doenças Inflamatórias Intestinais , Janus Quinases/antagonistas & inibidores , Masculino , Naftiridinas/farmacologia , Naftiridinas/toxicidade , Nitrilas/farmacologia , Nitrilas/toxicidade , Gravidez , Coelhos , Ratos , Reprodução/efeitos dos fármacos , Testes de ToxicidadeRESUMO
Checkpoint Kinase-1 (Chk1, CHK1, CHEK1) is a Ser/Thr protein kinase that mediates cellular responses to DNA-damage. A novel class of Chk1 inhibitors, triazoloquinolones/triazolones (TZ's) was identified by high throughput screening. The optimization of these hits to provide a lead series is described.
Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/efeitos dos fármacos , Triazóis/química , Triazóis/farmacologia , Quinase 1 do Ponto de Checagem , Cristalografia por Raios X , Descoberta de Drogas , Modelos Moleculares , Relação Estrutura-AtividadeRESUMO
BACKGROUND AND AIMS: Oral systemic pan-Janus kinase [JAK] inhibition is effective for ulcerative colitis [UC] but is limited by toxicities. We describe preclinical to clinical translation of TD-1473-an oral gut-selective pan-JAK inhibitor-from in vitro characterization through a Phase 1b study in patients with UC. METHODS: TD-1473 JAK inhibition potency was evaluated in vitro; plasma pharmacokinetics, safety and efficacy were assessed in mice. In a first-time-in-human study, plasma pharmacokinetics and safety were assessed after single and multiple [14 days] ascending doses administered orally to healthy subjects. The Phase 1b study randomized patients with moderately to severely active UC to receive once-daily oral TD-1473 20, 80 or 270 mg, or placebo for 28 days. Plasma and colonic tissue concentrations were measured; safety was assessed; and efficacy was evaluated by UC clinical parameters, disease-surrogate biomarkers, endoscopy, histology and colonic tissue JAK signalling. RESULTS: TD-1473 exhibited potent pan-JAK inhibitory activity in vitro. Oral TD-1473 administration to mice achieved high, biologically active colonic tissue concentrations with low plasma exposure and decreased oxazolone-induced colitis activity without reducing blood cell counts vs placebo. TD-1473 administration in healthy human subjects and patients with UC yielded low plasma exposure and was generally well tolerated; treatment in patients with UC resulted in biologically active colonic tissue concentrations and descriptive trends toward reduced clinical, endoscopic and histological disease activity vs placebo. CONCLUSION: Gut-selective pan-JAK inhibition with TD-1473 administration resulted in high intestinal vs plasma drug exposure, local target engagement, and trends toward reduced UC disease activity. [Clinicaltrials.gov NCT02657122, NCT02818686].
Assuntos
Colite Ulcerativa , Mucosa Intestinal , Inibidores de Janus Quinases , Administração Oral , Adulto , Animais , Biomarcadores Farmacológicos/análise , Contagem de Células Sanguíneas/métodos , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Relação Dose-Resposta Imunológica , Voluntários Saudáveis , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Inibidores de Janus Quinases/imunologia , Inibidores de Janus Quinases/farmacocinética , Masculino , Camundongos , Índice de Gravidade de Doença , Distribuição Tecidual/imunologia , Pesquisa Translacional Biomédica/métodos , Resultado do TratamentoRESUMO
Prototypic CYP3A4 inducers were tested in a pregnane X receptor (PXR) reporter gene assay, Fa2N-4 cells, HepaRG cells, and primary human hepatocytes, along with negative controls, using CYP3A4 mRNA and activity endpoints, where appropriate. Over half of the compounds tested (14 of 24) were identified as time-dependent inhibitors of CYP3A4 and high mRNA/activity ratios (>10) were consistent with CYP3A4 time-dependent inhibition for compounds such as troleandomycin, ritonavir, and verapamil. Induction response was compared between two human donors; there was an excellent correlation in the EC(50) estimates (r(2) = 0.89, p < 0.001), and a weak but statistically significant correlation was noted for maximum observed induction at an optimum concentration (E(max)) (r(2) = 0.38, p = 0.001). E(max) and EC(50) estimates determined from the PXR reporter gene assay and Fa2N-4 and HepaRG cells were compared with those from hepatocytes. Overall, EC(50) values generated using hepatocytes agreed with those generated in the PXR reporter gene assay (r(2) = 0.85, p < 0.001) and Fa2N-4 (r(2) = 0.65, p < 0.001) and HepaRG (r(2) = 0.99, p < 0.001) cells. However, E(max) values generated in hepatocytes were only significantly correlated to those determined in Fa2N-4 (r(2) = 0.33, p = 0.005) and HepaRG cells (r(2) = 0.79, p < 0.001). "Gold standard" cytochrome P450 induction data can be generated using primary human hepatocytes, but a restricted, erratic supply and interdonor variability somewhat restrict routine application within a drug discovery setting. HepaRG cells are a valuable recent addition to the armory of in vitro tools for assessing CYP3A4 induction and seem to be an excellent surrogate of primary cells.
Assuntos
Citocromo P-450 CYP3A/biossíntese , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Células Cultivadas , Desenho de Fármacos , Indução Enzimática/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Preparações Farmacêuticas , Receptor de Pregnano X , Receptores de Esteroides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
A multiexponential allometry (MA) method was developed to predict human drug clearance from preclinical data. Separate data sets containing clearances from human and preclinical species were chosen for the study. Human clearance was estimated using the MA technique according to the equation: CL = aBWb + cBWd, where CL is clearance in milliliters/minute, and a, b, c, and d are constants derived from preclinical pharmacokinetic data. Simple allometry (SA) gave the poorest prediction using any data set, and the percentage outliers remained larger than MA or monkey liver blood flow within 1.5-, 2-, and 3-fold error. Analysis of compounds common to both data sets suggested that MA could accurately predict human clearances within approximately 10% of 3-fold error. The analysis also showed that monkey is an important species for scaling, and MA is a better predictor of human clearance when the slope of SA is >0.7.
Assuntos
Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Farmacocinética , Animais , Peso Corporal , Interpretação Estatística de Dados , Avaliação Pré-Clínica de Medicamentos/métodos , Haplorrinos , Humanos , Circulação Hepática/fisiologia , Especificidade da EspécieRESUMO
Checkpoint kinase-1 (Chk1, CHEK1) is a Ser/Thr protein kinase that mediates the cellular response to DNA-damage. A novel class of 2-ureido thiophene carboxamide urea (TCU) Chk1 inhibitors is described. Inhibitors in this chemotype were optimized for cellular potency and selectivity over Cdk1.
Assuntos
Química Farmacêutica/métodos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Amidas/química , Apoptose , Carbono/química , Ciclo Celular , Quinase 1 do Ponto de Checagem , Dano ao DNA , Desenho de Fármacos , Humanos , Concentração Inibidora 50 , Modelos Químicos , Éteres Fenílicos/química , Tiofenos/química , Ureia/químicaRESUMO
Checkpoint kinase 1 (CHK1) inhibitors are potential cancer therapeutics that can be utilized for enhancing the efficacy of DNA damaging agents. Multiple small molecule CHK1 inhibitors from different chemical scaffolds have been developed and evaluated in clinical trials in combination with chemotherapeutics and radiation treatment. Scaffold morphing of thiophene carboxamide ureas (TCUs), such as AZD7762 (1) and a related series of triazoloquinolines (TZQs), led to the identification of fused-ring bicyclic CHK1 inhibitors, 7-carboxamide thienopyridines (7-CTPs), and 7-carboxamide indoles. X-ray crystal structures reveal a key intramolecular noncovalent sulfur-oxygen interaction in aligning the hinge-binding carboxamide group to the thienopyridine core in a coplanar fashion. An intramolecular hydrogen bond to an indole NH was also effective in locking the carboxamide in the preferred bound conformation to CHK1. Optimization on the 7-CTP series resulted in the identification of lead compound 44, which displayed respectable drug-like properties and good in vitro and in vivo potency.
Assuntos
Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Descoberta de Drogas , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/química , Dano ao DNA , Humanos , Indóis/química , Modelos Moleculares , Domínios Proteicos , Piridinas/químicaRESUMO
BACKGROUND: An unmet need remains for safe and effective treatments to induce and maintain remission in inflammatory bowel disease (IBD) patients. The Janus kinase (JAK) inhibitor, tofacitinib, has demonstrated robust efficacy in ulcerative colitis patients although, like other systemic immunosuppressants, there may be safety concerns associated with its use. This preclinical study evaluated whether modulating intestinal inflammation via local JAK inhibition can provide efficacy without systemic immunosuppression. METHODS: The influence of tofacitinib, dosed orally or intracecally, on oxazolone-induced colitis, oxazolone or interferon-γ (IFNγ)-induced elevation of colonic phosphorylated signal transducer and activator of transcription1 (pSTAT1) levels, and basal splenic natural killer (NK) cell counts was investigated in mice. RESULTS: Tofacitinib, dosed orally or intracecally, inhibited, with similar efficacy, oxazolone-induced colitis, represented by improvements in the disease activity index and its sub-scores (body weight, stool consistency and blood content). Intracecal dosing of tofacitinib resulted in a higher colon:plasma drug exposure ratio compared to oral dosing. At equieffective oral and intracecal doses, colonic levels of tofacitinib were similar, while the plasma levels for the latter were markedly lower, consistent with a lack of effect on splenic NK cell counts. Tofacitinib, dosed orally, intracecally, or applied to the colonic lumen in vitro, produced dose-dependent, and maximal inhibition of oxazolone or IFNγ-induced STAT1 phosphorylation in the colon. CONCLUSIONS: Localized colonic JAK inhibition, by intracecal delivery of tofacitinib, provides colonic target engagement and efficacy in a mouse colitis model at doses which do not impact splenic NK cell counts. Intestinal targeting of JAK may permit separation of local anti-inflammatory activity from systemic immunosuppression, and thus provide a larger therapeutic index compared to systemic JAK inhibitors.
RESUMO
Compound 3 (BMS-536924), a novel small-molecule inhibitor of the insulin-like growth factor receptor kinase with equal potency against the insulin receptor is described. The in vitro and in vivo biological activity of this interesting compound is also reported.
Assuntos
Antineoplásicos/síntese química , Benzimidazóis/síntese química , Piridinas/síntese química , Piridonas/síntese química , Receptor IGF Tipo 1/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Disponibilidade Biológica , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Haplorrinos , Humanos , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Transplante de Neoplasias , Piridinas/química , Piridinas/farmacologia , Piridonas/química , Piridonas/farmacologia , Ratos , Receptor de Insulina/efeitos dos fármacos , Relação Estrutura-AtividadeRESUMO
BMS-505130 is a potent and selective serotonin transport inhibitor; K(i) for binding to the serotonin transporter = 0.18 nM (K(i) values for binding to the norepinephrine and dopamine transporters = 4.6 and 2.1 microM, respectively). In platelet serotonin uptake studies BMS-505130 (5 mg/kg, p.o.) produced a robust inhibition of serotonin uptake. In microdialysis studies oral dosing with BMS-505130 produced a dose-dependent increase in cortical serotonin levels that reached a maximal effect of 200% above baseline at a dose of 1 mg/kg, p.o.; the peak serotonin response was transient in nature. Following oral administration, peak plasma concentrations of BMS-505130 reached Tmax at 1.6 +/- 0.7 h and then declined to concentrations <10% of Cmax within the following 6 h; plasma half-life following i.v. dosing was 0.46 +/- 0.02 h. Parallel microdialysis and pharmacokinetic studies revealed that changes in serotonin levels in the cortex mirrored changes in the brain concentration of BMS-505130. In a behavioral assay known to be sensitive to selective serotonin reuptake inhibitors (SSRIs), mouse tail suspension, BMS-505130 produced a robust response after either oral or intraperitoneal dosing. BMS-505130 exhibits a pharmacological, neurochemical and behavioral profile consistent with a potent SSRI. Moreover, BMS-505130's short half-life may be advantageous for the treatment of premature ejaculation where an acute effect to delay ejaculation followed by a relatively rapid fall in SSRI plasma concentrations might be desirable.
Assuntos
Elevação dos Membros Posteriores/métodos , Indóis/farmacocinética , Glicoproteínas de Membrana/antagonistas & inibidores , Moduladores de Transporte de Membrana , Proteínas de Membrana Transportadoras/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Inibidores Seletivos de Recaptação de Serotonina/farmacocinética , Administração Oral , Animais , Células CHO , Linhagem Celular , Cricetinae , Ciclopropanos , Cães , Relação Dose-Resposta a Droga , Humanos , Indóis/administração & dosagem , Indóis/farmacologia , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Proteínas da Membrana Plasmática de Transporte de Serotonina , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/farmacologiaRESUMO
The compounds described herein with a spirocyclic architecture fused to a benzisoxazole ring represent a new class of antibacterial agents that operate by inhibition of DNA gyrase as corroborated in an enzyme assay and by the inhibition of precursor thymidine into DNA during cell growth. Activity resided in the configurationally lowest energy (2S,4R,4aR) diastereomer. Highly active compounds against Staphylococcus aureus had sufficiently high solubility, high plasma protein free fraction, and favorable pharmacokinetics to suggest that in vivo efficacy could be demonstrated, which was realized with compound (-)-1 in S. aureus mouse infection models. A high drug exposure NOEL on oral dosing in the rat suggested that a high therapeutic margin could be achieved. Importantly, (-)-1 was not cross-resistant with other DNA gyrase inhibitors such as fluoroquinolone and aminocoumarin antibacterials. Hence, this class shows considerable promise for the treatment of infections caused by multidrug resistant bacteria, including S. aureus.
Assuntos
Antibacterianos/síntese química , Barbitúricos/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Isoxazóis/síntese química , Inibidores da Topoisomerase II/síntese química , Animais , Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Barbitúricos/farmacocinética , Barbitúricos/uso terapêutico , Feminino , Fluoroquinolonas/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Concentração Inibidora 50 , Isoxazóis/farmacocinética , Isoxazóis/uso terapêutico , Masculino , Camundongos , Piridonas/síntese química , Piridonas/farmacocinética , Piridonas/uso terapêutico , Ratos Wistar , Compostos de Espiro/síntese química , Compostos de Espiro/farmacocinética , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/farmacocinética , Inibidores da Topoisomerase II/uso terapêuticoRESUMO
Tropomyosin-related kinases (Trk) are tyrosine kinase receptors implicated in tumor proliferation, invasion, and survival signaling across a number of tumors, making them potentially attractive targets for the treatment of cancer. AZD7451 is a potent and selective inhibitor of Trk kinases currently undergoing a Phase I dose escalation in glioblastoma multiforme at the National Cancer Institute. A key part of early clinical testing for AZD7451 involves demonstrating that pharmacokinetic half-life and clinical exposures of AZD7451 are sufficient to inhibit Trk receptors in preclinical models. To address this need, an ultra sensitive analytical method was developed to measure the AZD7451 profile in human plasma. A liquid-liquid extraction recovered >80% of AZD7451 before quantitative analysis by ultra HPLC-MS/MS. A Varian Polaris(®) C18-A column and a mass transition of m/z 383.5â340.5 (m/z 389.6â342.0 for the internal standard [(2)H6]-AZD7451) was used, and a dynamic calibration range of 0.5-1000ng/mL was established, which provided a sensitive (<8.5% deviation), and precise (<6%) quantitative assay for AZD7451. AZD7451 demonstrated stability in human plasma at room temperature for 24h (<7% change) and after extraction at 4°C for 24h (<8% change), and was stable through 4 freeze/thaw cycles (<8% change). This method was used to measure AZD7451 plasma levels in clinical samples to confirm the sensitivity at several time points following AZD7451 treatment in subjects with glioblastoma.
Assuntos
2-Aminopurina/sangue , Antineoplásicos/sangue , Cromatografia Líquida de Alta Pressão/métodos , Inibidores de Proteínas Quinases/sangue , Pirazóis/sangue , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Espectrometria de Massas em Tandem/métodos , 2-Aminopurina/química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Estabilidade de Medicamentos , Humanos , Modelos Lineares , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/química , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Novel non-fluoroquinolone inhibitors of bacterial type II topoisomerases (DNA gyrase and topoisomerase IV) are of interest for the development of new antibacterial agents that are not impacted by target-mediated cross-resistance with fluoroquinolones. N-Linked amino piperidines, such as 7a, generally show potent antibacterial activity, including against quinolone-resistant isolates, but suffer from hERG inhibition (IC(50) = 44 µM for 7a) and QT prolongation in vivo. We now disclose the finding that new analogues of 7a with reduced pK(a) due to substitution with an electron-withdrawing substituent in the piperidine moiety, such as R,S-7c, retained the Gram-positive activity of 7a but showed significantly less hERG inhibition (IC(50) = 233 µM for R,S-7c). This compound exhibited moderate clearance in dog, promising efficacy against a MRSA strain in a mouse infection model, and an improved in vivo QT profile as measured in a guinea pig in vivo model. As a result of its promising activity, R,S-7c was advanced into phase I clinical studies.