Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928159

RESUMO

Arc (also known as Arg3.1) is an activity-dependent immediate early gene product enriched in neuronal dendrites. Arc plays essential roles in long-term potentiation, long-term depression, and synaptic scaling. Although its mechanisms of action in these forms of synaptic plasticity are not completely well established, the activities of Arc include the remodeling of the actin cytoskeleton, the facilitation of AMPA receptor (AMPAR) endocytosis, and the regulation of the transcription of AMPAR subunits. In addition, Arc has sequence and structural similarity to retroviral Gag proteins and self-associates into virus-like particles that encapsulate mRNA and perhaps other cargo for intercellular transport. Each of these activities is likely to be influenced by Arc's reversible self-association into multiple oligomeric species. Here, we used mass photometry to show that Arc exists predominantly as monomers, dimers, and trimers at approximately 20 nM concentration in vitro. Fluorescence fluctuation spectroscopy revealed that Arc is almost exclusively present as low-order (monomer to tetramer) oligomers in the cytoplasm of living cells, over a 200 nM to 5 µM concentration range. We also confirmed that an α-helical segment in the N-terminal domain contains essential determinants of Arc's self-association.


Assuntos
Proteínas do Citoesqueleto , Proteínas do Tecido Nervoso , Multimerização Proteica , Humanos , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Animais
2.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255853

RESUMO

Activity-regulated cytoskeleton-associated protein (Arc) plays essential roles in diverse forms of synaptic plasticity, including long-term potentiation (LTP), long-term depression (LTD), and homeostatic plasticity. In addition, it assembles into virus-like particles that may deliver mRNAs and/or other cargo between neurons and neighboring cells. Considering this broad range of activities, it is not surprising that Arc is subject to regulation by multiple types of post-translational modification, including phosphorylation, palmitoylation, SUMOylation, ubiquitylation, and acetylation. Here we explore the potential regulatory role of Arc phosphorylation by protein kinase C (PKC), which occurs on serines 84 and 90 within an α-helical segment in the N-terminal domain. To mimic the effect of PKC phosphorylation, we mutated the two serines to negatively charged glutamic acid. A consequence of introducing these phosphomimetic mutations is the almost complete inhibition of Arc palmitoylation, which occurs on nearby cysteines and contributes to synaptic weakening. The mutations also inhibit the binding of nucleic acids and destabilize high-order Arc oligomers. Thus, PKC phosphorylation of Arc may limit the full expression of LTD and may suppress the interneuronal transport of mRNAs.


Assuntos
Lipoilação , Ácidos Nucleicos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteína Quinase C/genética
3.
PLoS One ; 19(4): e0298418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625857

RESUMO

The chemokines of the immune system act as first responders by operating as chemoattractants, directing immune cells to specific locations of inflamed tissues. This promiscuous network is comprised of 50 ligands and 18 receptors where the ligands may interact with the receptors in various oligomeric states i.e., monomers, homodimers, and heterodimers. Chemokine receptors are G-protein coupled receptors (GPCRs) present in the membrane of immune cells. The migration of immune cells occurs in response to a concentration gradient of the ligands. Chemotaxis of neutrophils is directed by CXC-ligand (CXCL) activation of the membrane bound CXC chemokine receptor 2 (CXCR2). CXCR2 plays an important role in human health and is linked to disorders such as autoimmune disorders, inflammation, and cancer. Yet, despite their important role, little is known about the biophysical characteristics controlling ligand:ligand and ligand:receptor interaction essential for biological activity. In this work, we study the homodimers of three of the CXCR2 cognate ligands, CXCL1, CXCL5, and CXCL8. The ligands share high structural integrity but a low sequence identity. We show that the sequence diversity has evolved different binding affinities and stabilities for the CXC-ligands resulting in diverse agonist/antagonist behavior. Furthermore, CXC-ligands fold through a three-state mechanism, populating a folded monomeric state before associating into an active dimer.


Assuntos
Interleucina-8 , Receptores de Interleucina-8B , Humanos , Receptores de Interleucina-8B/genética , Ligantes , Interleucina-8/metabolismo , Quimiocinas/metabolismo , Quimiocina CXCL1 , Fatores Quimiotáticos/metabolismo , Quimiotaxia
4.
bioRxiv ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39091779

RESUMO

The heme-based direct oxygen sensor DosP degrades c-di-GMP, a second messenger nearly unique to bacteria. In stationary phase Escherichia coli, DosP is the most abundant c-di-GMP phosphodiesterase. Ligation of O2 to a heme-binding PAS domain (hPAS) of the protein enhances the phosphodiesterase through an allosteric mechanism that has remained elusive. We determined six structures of full-length DosP in its aerobic or anaerobic conformations, with or without c-di-GMP. DosP is an elongated dimer with the regulatory heme and phosphodiesterase separated by nearly 180 Å. In the absence of substrate, regardless of the heme status, DosP presents an equilibrium of two distinct conformations. Binding of substrate induces DosP to adopt a single, ON-state or OFF-state conformation depending on its heme status. Structural and biochemical studies of this multi-domain sensor and its mutants provide insights into signal regulation of second-messenger levels.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa