Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Gastroenterology ; 165(4): 932-945.e9, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399999

RESUMO

BACKGROUND & AIMS: Early detection of esophageal squamous cell carcinoma (ESCC) will facilitate curative treatment. We aimed to establish a microRNA (miRNA) signature derived from salivary extracellular vesicles and particles (EVPs) for early ESCC detection and prognostication. METHODS: Salivary EVP miRNA expression was profiled in a pilot cohort (n = 54) using microarray. Area under the receiver operator characteristic curve (AUROC) and least absolute shrinkage and selector operation regression analyses were used to prioritize miRNAs that discriminated patients with ESCC from controls. Using quantitative reverse transcription polymerase chain reaction, the candidates were measured in a discovery cohort (n = 72) and cell lines. The prediction models for the biomarkers were derived from a training cohort (n = 342) and validated in an internal cohort (n = 207) and an external cohort (n = 226). RESULTS: The microarray analysis identified 7 miRNAs for distinguishing patients with ESCC from control subjects. Because 1 was not always detectable in the discovery cohort and cell lines, the other 6 miRNAs formed a panel. A signature of this panel accurately identified patients with all-stage ESCC in the training cohort (AUROC = 0.968) and was successfully validated in 2 independent cohorts. Importantly, this signature could distinguish patients with early-stage (stage Ⅰ/Ⅱ) ESCC from control subjects in the training cohort (AUROC = 0.969, sensitivity = 92.00%, specificity = 89.17%) and internal (sensitivity = 90.32%, specificity = 91.04%) and external (sensitivity = 91.07%, specificity = 88.06%) validation cohorts. Moreover, a prognostic signature based on the panel was established and efficiently predicted the high-risk cases with poor progression-free survival and overall survival. CONCLUSIONS: The salivary EVP-based 6-miRNA signature can serve as noninvasive biomarkers for early detection and risk stratification of ESCC. Chinese Clinical Trial Registry, ChiCTR2000031507.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Biomarcadores Tumorais/genética , Detecção Precoce de Câncer , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Prognóstico , Curva ROC
2.
Chembiochem ; 25(5): e202300828, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236789

RESUMO

An efficient and easy-to-use approach is presented for obtaining biocompatible polysaccharide-based nanoparticles (NP) that can act as tumor-specific drug delivery agents. Two antibodies are directly immobilized onto reactive xylan phenyl carbonate (XPC) NP; namely Cetuximab (CTX) that binds to human epidermal growth factor receptor (EGFR) and Atezolizumab (ATZ) that binds to programmed death-ligand 1 (PD-L1). High coupling efficiency (up to 100 %) are achieved without any pre-activation and no aggregation occurs during antibody immobilization. By quartz crystal microbalance experiments with dissipation monitoring (QCM-D), flow cytometry assays, and confocal laser scanning microscopy imaging it is demonstrated that the functionalized XPC-NP specifically bind to cells carrying the corresponding antigens. Moreover, the NP retain the antibody specific bioactivities (growth inhibition for CTX and induction of T-cell cytotoxicity for ATZ).


Assuntos
Polissacarídeos , Xilanos , Humanos , Especificidade de Anticorpos , Bioensaio , Carbonatos , Cetuximab/farmacologia
3.
Cancer Immunol Immunother ; 71(7): 1655-1669, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34800147

RESUMO

BACKGROUND: Calreticulin (CRT) is an endoplasmic reticulum (ER) chaperone, but can appear surface bound on cancers cells, including ovarian cancers (OC). We investigated at what stage of cell viability, CRT appeared associated with surface of human OC cells. CRT on pre-apoptotic tumour cells is thought to initiate their eradication via a process termed immunogenic cell death (ICD). METHODS: We treated OC cells with the chemotherapeutic-doxorubicin (DX) known to induce translocation of CRT to some tumour cell surfaces, with and without the ER stressor-thapsigargin (TG)-and/or an ER stress inhibitor-TUDCA. We monitored translocation/release of CRT in pre-apoptotic cells by flow cytometry, immunoblotting and ELISA. We investigated the difference in binding of FITC-CRT to pre-apoptotic, apoptotic and necrotic cells and the ability of extracellular CRT to generate immature dendritic cells from THP-1 monocytes. RESULTS: Dx-treatment increased endogenously released CRT and extracellular FITC_CRT binding to human pre-apoptotic OC cells. DX and TG also promoted cell death in OC cells which also increased CRT release. These cellular responses were significantly inhibited by TUDCA, suggesting that ER stress is partially responsible for the changes in CRT cellular distribution. Extracellular CRT induces maturation of THP-1 towards a imDC phenotype, an important component of ICD. CONCLUSION: Collectively, these cellular responses suggest that ER stress is partially responsible for the changes in CRT cellular distribution. ER-stress regulates in part the release and binding of CRT to human OC cells where it may play a role in ICD.


Assuntos
Calreticulina , Estresse do Retículo Endoplasmático , Neoplasias Ovarianas , Apoptose , Calreticulina/metabolismo , Carcinoma Epitelial do Ovário , Feminino , Fluoresceína-5-Isotiocianato , Humanos , Tapsigargina/farmacologia
4.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652766

RESUMO

Elevated activation of the autophagy pathway is currently thought to be one of the survival mechanisms allowing therapy-resistant cancer cells to escape elimination, including for cytarabine (AraC)-resistant acute myeloid leukemia (AML) patients. Consequently, the use of autophagy inhibitors such as chloroquine (CQ) is being explored for the re-sensitization of AraC-resistant cells. In our study, no difference in the activity of the autophagy pathway was detected when comparing AraC-Res AML cell lines to parental AraC-sensitive AML cell lines. Furthermore, treatment with autophagy inhibitors CQ, 3-Methyladenine (3-MA), and bafilomycin A1 (BafA1) did not re-sensitize AraC-Res AML cell lines to AraC treatment. However, in parental AraC-sensitive AML cells, treatment with AraC did activate autophagy and, correspondingly, combination of AraC with autophagy inhibitors strongly reduced cell viability. Notably, the combination of these drugs also yielded the highest level of cell death in a panel of patient-derived AML samples even though not being additive. Furthermore, there was no difference in the cytotoxic effect of autophagy inhibition during AraC treatment in matched de novo and relapse samples with differential sensitivity to AraC. Thus, inhibition of autophagy may improve AraC efficacy in AML patients, but does not seem warranted for the treatment of AML patients that have relapsed with AraC-resistant disease.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Cloroquina/farmacologia , Citarabina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Células Tumorais Cultivadas
5.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105656

RESUMO

The advent of immunotherapy has had a major impact on the outcome and overall survival in many types of cancer. Current immunotherapeutic strategies typically aim to (re)activate anticancer T cell immunity, although the targeting of macrophage-mediated anticancer innate immunity has also emerged in recent years. Neutrophils, although comprising ≈ 60% of all white blood cells in the circulation, are still largely overlooked in this respect. Nevertheless, neutrophils have evident anticancer activity and can induce phagocytosis, trogocytosis, as well as the direct cytotoxic elimination of cancer cells. Furthermore, therapeutic tumor-targeting monoclonal antibodies trigger anticancer immune responses through all innate Fc-receptor expressing cells, including neutrophils. Indeed, the depletion of neutrophils strongly reduced the efficacy of monoclonal antibody treatment and increased tumor progression in various preclinical studies. In addition, the infusion of neutrophils in murine cancer models reduced tumor progression. However, evidence on the anticancer effects of neutrophils is fragmentary and mostly obtained in in vitro assays or murine models with reports on anticancer neutrophil activity in humans lagging behind. In this review, we aim to give an overview of the available knowledge of anticancer activity by neutrophils. Furthermore, we will describe strategies being explored for the therapeutic activation of anticancer neutrophil activity.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Neutrófilos/imunologia , Animais , Antineoplásicos Imunológicos/farmacologia , Membrana Celular/patologia , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Imunidade Inata , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/metabolismo , Camundongos , Neoplasias/imunologia , Neutrófilos/fisiologia , Fagocitose/imunologia , Fatores de Necrose Tumoral/imunologia , Fatores de Necrose Tumoral/metabolismo
6.
Med Res Rev ; 39(2): 517-560, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30302772

RESUMO

Autophagy is a crucial recycling process that is increasingly being recognized as an important factor in cancer initiation, cancer (stem) cell maintenance as well as the development of resistance to cancer therapy in both solid and hematological malignancies. Furthermore, it is being recognized that autophagy also plays a crucial and sometimes opposing role in the complex cancer microenvironment. For instance, autophagy in stromal cells such as fibroblasts contributes to tumorigenesis by generating and supplying nutrients to cancerous cells. Reversely, autophagy in immune cells appears to contribute to tumor-localized immune responses and among others regulates antigen presentation to and by immune cells. Autophagy also directly regulates T and natural killer cell activity and is required for mounting T-cell memory responses. Thus, within the tumor microenvironment autophagy has a multifaceted role that, depending on the context, may help drive tumorigenesis or may help to support anticancer immune responses. This multifaceted role should be taken into account when designing autophagy-based cancer therapeutics. In this review, we provide an overview of the diverse facets of autophagy in cancer cells and nonmalignant cells in the cancer microenvironment. Second, we will attempt to integrate and provide a unified view of how these various aspects can be therapeutically exploited for cancer therapy.


Assuntos
Autofagia , Neoplasias/patologia , Microambiente Tumoral , Animais , Proteína Beclina-1/metabolismo , Neoplasias da Mama/patologia , Carcinogênese , Transformação Celular Neoplásica , Feminino , Fibroblastos/metabolismo , Proteína HMGB1/metabolismo , Humanos , Hipóxia , Camundongos , Mutação , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Células Estromais/metabolismo
7.
Int J Mol Sci ; 20(16)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430907

RESUMO

The aetiology of rheumatoid arthritis (RA) is unknown, but citrullination of proteins is thought to be an initiating event. In addition, it is increasingly evident that the lung can be a potential site for the generation of autoimmune triggers before the development of joint disease. Here, we identified that serum levels of galectin-9 (Gal-9), a pleiotropic immunomodulatory protein, are elevated in RA patients, and are even further increased in patients with comorbid bronchiectasis, a lung disease caused by chronic inflammation. The serum concentrations of Gal-9 correlate with C-reactive protein levels and DAS-28 score. Gal-9 activated polymorphonuclear leukocytes (granulocytes) in vitro, which was characterized by increased cytokine secretion, migration, and survival. Further, granulocytes treated with Gal-9 upregulated expression of peptidyl arginine deiminase 4 (PAD-4), a key enzyme required for RA-associated citrullination of proteins. Correspondingly, treatment with Gal-9 triggered citrullination of intracellular granulocyte proteins that are known contributors to RA pathogenesis (i.e., myeloperoxidase, alpha-enolase, MMP-9, lactoferrin). In conclusion, this study identifies for the first time an immunomodulatory protein, Gal-9, that triggers activation of granulocytes leading to increased PAD-4 expression and generation of citrullinated autoantigens. This pathway may represent a potentially important mechanism for development of RA.


Assuntos
Artrite Reumatoide/patologia , Galectinas/imunologia , Granulócitos/patologia , Proteína-Arginina Desiminase do Tipo 4/imunologia , Idoso , Artrite Reumatoide/sangue , Artrite Reumatoide/imunologia , Células Cultivadas , Feminino , Galectinas/sangue , Granulócitos/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Fagocitose
8.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669362

RESUMO

The endoplasmic reticulum (ER) chaperone protein, calreticulin (CRT), is essential for proper glycoprotein folding and maintaining cellular calcium homeostasis. During ER stress, CRT is overexpressed as part of the unfolded protein response (UPR). In addition, CRT can be released as a damage-associated molecular pattern (DAMP) molecule that may interact with pathogen-associated molecular patterns (PAMPs) during the innate immune response. One such PAMP is lipopolysaccharide (LPS), a component of the gram-negative bacterial cell wall. In this report, we show that recombinant and native human placental CRT strongly interacts with LPS in solution, solid phase, and the surface of gram-negative and gram-positive bacteria. Furthermore, LPS induces oilgomerization of CRT with a disappearance of the monomeric form. The application of recombinant CRT (rCRT) to size exclusion and anion exchange chromatography shows an atypical heterogeneous elution profile, indicating that LPS affects the conformation and ionic charge of CRT. Interestingly, LPS bound to CRT is detected in sera of bronchiectasis patients with chronic bacterial infections. By ELISA, rCRT dose-dependently bound to solid phase LPS via the N- and C-domain globular head region of CRT and the C-domain alone. The specific interaction of CRT with LPS may be important in PAMP innate immunity.


Assuntos
Alarminas/metabolismo , Calreticulina/metabolismo , Lipopolissacarídeos/metabolismo , Alarminas/química , Animais , Calreticulina/química , Cromatografia em Gel , Endotoxinas/metabolismo , Humanos , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
9.
Mol Cancer ; 13: 85, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24741998

RESUMO

BACKGROUND: Stimulation of CD40 can augment anti-cancer T cell immune responses by triggering effective activation and maturation of antigen-presenting cells (APCs). Although CD40 agonists have clinical activity in humans, the associated systemic activation of the immune system triggers dose-limiting side-effects. METHODS: To increase the tumor selectivity of CD40 agonist-based therapies, we developed an approach in which soluble trimeric CD40L (sCD40L) is genetically fused to tumor targeting antibody fragments, yielding scFv:CD40L fusion proteins. We hypothesized that scFv:CD40L fusion proteins would have reduced CD40 agonist activity similar to sCD40L but will be converted to a highly agonistic membrane CD40L-like form of CD40L upon anchoring to cell surface exposed antigen via the scFv domain. RESULTS: Targeted delivery of CD40L to the carcinoma marker EpCAM on carcinoma cells induced dose-dependent paracrine maturation of DCs ~20-fold more effective than a non-targeted control scFv:CD40L fusion protein. Similarly, targeted delivery of CD40L to the B cell leukemia marker CD20 induced effective paracrine maturation of DCs. Of note, the CD20-selective delivery of CD40L also triggered loss of cell viability in certain B cell leukemic cell lines as a result of CD20-induced apoptosis. CONCLUSIONS: Targeted delivery of CD40L to cancer cells is a promising strategy that may help to trigger cancer-localized activation of CD40 and can be modified to exert additional anti-cancer activity via the targeting domain.


Assuntos
Linfócitos B/efeitos dos fármacos , Ligante de CD40/genética , Células Dendríticas/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/genética , Anticorpos Monoclonais Murinos/farmacologia , Antígenos CD20/genética , Antígenos CD20/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Ligante de CD40/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Molécula de Adesão da Célula Epitelial , Expressão Gênica , Células HEK293 , Humanos , Terapia de Alvo Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rituximab , Anticorpos de Cadeia Única/metabolismo
10.
J Gene Med ; 16(9-10): 281-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25088657

RESUMO

BACKGROUND: Progressive liver fibrosis is the result of chronic liver injury and is characterized by the excessive accumulation of extracellular matrix that may result in liver failure. Activated hepatic stellate cells are known to play a central role in this process and their elimination is a crucial step towards the resolution and reversion of liver fibrosis. In the present study, we investigated the potential application of an anti-epidermal growth factor receptor single chain fragment variable antibody-tumor necrosis factor-related apoptosis-inducing ligand (scFv425-sTRAIL) fusion protein in the targeted elimination of activated hepatic stellate cells. METHODS: Activated hepatic stellate cells (LX2 cells) were treated by adenovirus-derived scFv425-sTRAIL to evaluate its effect on the viability and extracellular matrix production of this type of cells. RESULTS: In vitro treatment of activated hepatic stellate cells with scFv425-sTRAIL induced a significant reduction in viability (up to 100% reduction) and extracellular matrix production (60% reduction), yet no significant effect was observed on hepatic parenchymal cells. Blockage of the epidermal growth factor receptor (EGFR) by a monoclonal antibody significantly reduced the effectiveness of scFv425-sTRAIL in activated hepatic stellate cells, whereas a reduced effectivity was also observed after inhibition of the caspase pathway. CONCLUSIONS: Evidence is presented for the successful application of the scFv425-sTRAIL fusion protein in the targeted elimination of activated hepatic stellate cells via EGFR and simultaneous activation of the caspase pathway. scFv425-sTRAIL may thus represent a new therapeutic compound against liver fibrosis.


Assuntos
Apoptose/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Células Estreladas do Fígado/efeitos dos fármacos , Anticorpos de Cadeia Única/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Actinas/genética , Actinas/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Imuno-Histoquímica
11.
PLoS One ; 19(3): e0300416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483950

RESUMO

About 30% of the FDA approved drugs in 2021 were protein-based therapeutics. However, therapeutic proteins can be unstable and rapidly eliminated from the blood, compared to conventional drugs. Furthermore, on-target but off-tumor protein binding can lead to off-tumor toxicity, lowering the maximum tolerated dose. Thus, for effective treatment therapeutic proteins often require continuous or frequent administration. To improve protein stability, delivery and release, proteins can be encapsulated inside drug delivery systems. These drug delivery systems protect the protein from degradation during (targeted) transport, prevent premature release and allow for long-term, sustained release. However, thus far achieving high protein loading in drug delivery systems remains challenging. Here, the use of protein desolvation with acetonitrile as an intermediate step to concentrate monoclonal antibodies for use in drug delivery systems is reported. Specifically, trastuzumab, daratumumab and atezolizumab were desolvated with high yield (∼90%) into protein nanoparticles below 100 nm with a low polydispersity index (<0.2). Their size could be controlled by the addition of low concentrations of sodium chloride between 0.5 and 2 mM. Protein particles could be redissolved in aqueous solutions and redissolved antibodies retained their binding activity as evaluated in cell binding assays and exemplified for trastuzumab in an ELISA.


Assuntos
Nanopartículas , Neoplasias , Humanos , Cloreto de Sódio/uso terapêutico , Sistemas de Liberação de Medicamentos , Trastuzumab/uso terapêutico , Neoplasias/tratamento farmacológico , Acetonitrilas
12.
Exp Hematol Oncol ; 13(1): 35, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553748

RESUMO

BACKGROUND: VISTA is a well-known immune checkpoint in T cell biology, but its role in innate immunity is less established. Here, we investigated the role of VISTA on anticancer macrophage immunity, with a focus on phagocytosis, macrophage polarization and concomitant T cell activation. METHODS: Macrophages, differentiated from VISTA overexpressed THP-1 cells and cord blood CD34+ cell-derived monocytes, were used in phagocytosis assay using B lymphoma target cells opsonized with Rituximab. PBMC-derived macrophages were used to assess the correlation between phagocytosis and VISTA expression. qRT-PCR, flow cytometry, and enzyme-linked immunosorbent assay were performed to analyze the impact of VISTA on other checkpoints and M1/M2-like macrophage biology. Additionally, flow cytometry was used to assess the frequency of CD14+ monocytes expressing VISTA in PBMCs from 65 lymphoma patients and 37 healthy donors. RESULTS: Ectopic expression of VISTA in the monocytic model cell line THP-1 or in primary monocytes triggered differentiation towards the macrophage lineage, with a marked increase in M2-like macrophage-related gene expression and decrease in M1-like macrophage-related gene expression. VISTA expression in THP-1 and monocyte-derived macrophages strongly downregulated expression of SIRPα, a prominent 'don't eat me' signal, and augmented phagocytic activity of macrophages against cancer cells. Intriguingly, expression of VISTA's extracellular domain alone sufficed to trigger phagocytosis in ∼ 50% of cell lines, with those cell lines also directly binding to recombinant human VISTA, indicating ligand-dependent and -independent mechanisms. Endogenous VISTA expression was predominantly higher in M2-like macrophages compared to M0- or M1-like macrophages, with a positive correlation observed between VISTA expression in M2c macrophages and their phagocytic activity. VISTA-expressing macrophages demonstrated a unique cytokine profile, characterized by reduced IL-1ß and elevated IL-10 secretion. Furthermore, VISTA interacted with MHC-I and downregulated its surface expression, leading to diminished T cell activation. Notably, VISTA surface expression was identified in monocytes from all lymphoma patients but was less prevalent in healthy donors. CONCLUSIONS: Collectively, VISTA expression associates with and drives M2-like activation of macrophages with a high phagocytic capacity yet a decrease in antigen presentation capability to T cells. Therefore, VISTA is a negative immune checkpoint regulator in macrophage-mediated immune suppression.

13.
J Mol Med (Berl) ; 102(4): 521-536, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38381158

RESUMO

Viruses critically rely on various proteases to ensure host cell entry and replication. In response to viral infection, the host will induce acute tissue inflammation pulled by granulocytes. Upon hyperactivation, neutrophil granulocytes may cause undue tissue damage through proteolytic degradation of the extracellular matrix. Here, we assess the potential of protease inhibitors (PI) derived from potatoes in inhibiting viral infection and reducing tissue damage. The original full spectrum of potato PI was developed into five fractions by means of chromatography and hydrolysis. Individual fractions showed varying inhibitory efficacy towards a panel of proteases including trypsin, chymotrypsin, ACE2, elastase, and cathepsins B and L. The fractions did not interfere with SARS-CoV-2 infection of Vero E6 cells in vitro. Importantly, two of the fractions fully inhibited elastin-degrading activity of complete primary human neutrophil degranulate. These data warrant further development of potato PI fractions for biomedical purposes, including tissue damage crucial to SARS-CoV-2 pathogenesis. KEY MESSAGES: Protease inhibitor fractions from potato differentially inhibit a series of human proteases involved in viral replication and in tissue damage by overshoot inflammation. Protease inhibition of cell surface receptors such as ACE2 does not prevent virus infection of Vero cells in vitro. Protease inhibitors derived from potato can fully inhibit elastin-degrading primary human neutrophil proteases. Protease inhibitor fractions can be produced at high scale (hundreds of thousands of kilograms, i.e., tons) allowing economically feasible application in lower and higher income countries.


Assuntos
COVID-19 , Solanum tuberosum , Animais , Chlorocebus aethiops , Humanos , Solanum tuberosum/metabolismo , Peptídeo Hidrolases , Células Vero , Enzima de Conversão de Angiotensina 2 , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Inibidores Enzimáticos , Inflamação , Antivirais , Elastina/metabolismo
14.
Med Res Rev ; 33 Suppl 1: E102-26, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21793015

RESUMO

In recent years, an important role has emerged for the glycan-binding protein Galectin-9 (Gal-9) in health and disease. In normal physiology, Gal-9 seems to be a pivotal modulator of T-cell immunity by inducing apoptosis in specific T-cell subpopulations. Because these T-cell populations are associated with autoimmunity, inflammatory disease, and graft rejection, it was postulated that application of exogenous Gal-9 may limit pathogenic T-cell activity. Indeed, treatment with recombinant Gal-9 ameliorates disease activity in various preclinical models of autoimmunity and allograft graft rejection. In many solid cancers, the loss of Gal-9 expression is closely associated with metastatic progression. In line with this observation, treatment with recombinant Gal-9 prevents metastatic spread in various preclinical cancer models. In addition, various hematological malignancies are sensitive to apoptotic elimination by recombinant Gal-9. Here, we review the biology and physiological role of this versatile lectin and discuss the therapeutic potential of Gal-9 in various diseases, including autoimmunity, asthma, infection, and cancer.


Assuntos
Galectinas/uso terapêutico , Fatores Imunológicos/uso terapêutico , Apoptose/efeitos dos fármacos , Asma/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Galectinas/química , Humanos , Fatores Imunológicos/química , Infecções/tratamento farmacológico , Neoplasias/tratamento farmacológico , Linfócitos T/efeitos dos fármacos
15.
Commun Biol ; 6(1): 245, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882648

RESUMO

CD47 is a cell surface ligand expressed on all nucleated cells. It is a unique immune checkpoint protein acting as "don't eat me" signal to prevent phagocytosis and is constitutively overexpressed in many tumors. However, the underlying mechanism(s) for CD47 overexpression is not clear. Here, we show that irradiation (IR) as well as various other genotoxic agents induce elevated expression of CD47. This upregulation correlates with the extent of residual double-strand breaks (DSBs) as determined by γH2AX staining. Interestingly, cells lacking mre-11, a component of the MRE11-RAD50-NBS1 (MRN) complex that plays a central role in DSB repair, or cells treated with the mre-11 inhibitor, mirin, fail to elevate the expression of CD47 upon DNA damage. On the other hand, both p53 and NF-κB pathways or cell-cycle arrest do not play a role in CD47 upregualtion upon DNA damage. We further show that CD47 expression is upregulated in livers harvested from mice treated with the DNA-damage inducing agent Diethylnitrosamine (DEN) and in cisplatin-treated mesothelioma tumors. Hence, our results indicate that CD47 is upregulated following DNA damage in a mre-11-dependent manner. Chronic DNA damage response in cancer cells might contribute to constitutive elevated expression of CD47 and promote immune evasion.


Assuntos
Antígeno CD47 , Dano ao DNA , Fígado , Animais , Camundongos , Antígeno CD47/genética , Membrana Celular , Núcleo Celular
16.
Front Immunol ; 14: 1191866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545491

RESUMO

A higher density of tumor infiltrating lymphocytes (TILs) in the tumor microenvironment, particularly cytotoxic CD8+ T cells, is associated with improved clinical outcome in various cancers. However, local inhibitory factors can suppress T cell activity and hinder anti-tumor immunity. Notably, TILs from various cancer types express the co-stimulatory Tumor Necrosis Factor receptor CD27, making it a potential target for co-stimulation and re-activation of tumor-infiltrated and tumor-reactive T cells. Anti-cancer therapeutics based on exploiting CD27-mediated T cell co-stimulation have proven safe, but clinical responses remain limited. This is likely because current monoclonal antibodies fail to effectively activate CD27 signaling, as this receptor requires higher-order receptor cross-linking. Here, we report on a bispecific antibody, CD27xEGFR, that targets both CD27 and the tumor antigen, epidermal growth factor receptor (EGFR). By targeting EGFR, which is commonly expressed on carcinomas, CD27xEGFR induced cancer cell-localized crosslinking and activation of CD27. The design of CD27xEGFR includes an Fc-silent domain, which is designed to minimize potential toxicity by reducing Fc gamma receptor-mediated binding and activation of immune cells. CD27xEGFR bound to both of its targets simultaneously and triggered EGFR-restricted co-stimulation of T cells as measured by T cell proliferation, T cell activation markers, cytotoxicity and IFN-γ release. Further, CD27xEGFR augmented T cell cytotoxicity in a panel of artificial antigen-presenting carcinoma cell line models, leading to Effector-to-Target ratio-dependent elimination of cancer cells. Taken together, we present the in vitro characterization of a novel bispecific antibody that re-activates T cell immunity in EGFR-expressing cancers through targeted co-stimulation of CD27.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Neoplasias/terapia , Transdução de Sinais , Receptores ErbB , Microambiente Tumoral
17.
Cell Death Discov ; 9(1): 204, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391408

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive molecular subtype that due to lack of druggable targets is treated with chemotherapy as standard of care. However, TNBC is prone to chemoresistance and associates with poor survival. The aim of this study was to explore the molecular mechanisms of chemoresistance in TNBC. Firstly, we found that the mRNA expression of Notch1 and CD73 in cisplatin-treated patient material associated with poor clinical outcome. Further, both were upregulated at the protein level in cisplatin-resistant TNBC cell lines. Overexpression of Notch1 intracellular domain (termed N1ICD) increased expression of CD73, whereas knockdown of Notch1 decreased CD73 expression. Using chromatin immunoprecipitation and Dual-Luciferase assay it was identified that N1ICD directly bound the CD73 promoter and activated transcription. Taken together, these findings suggest CD73 as a direct downstream target of Notch1, providing an additional layer to the mechanisms underlying Notch1-mediated cisplatin resistance in TNBC.

18.
Front Immunol ; 14: 1233113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559730

RESUMO

Investigations into the strength of antigen-specific responses in vitro is becoming increasingly relevant for decision making in early-phase research of novel immunotherapeutic approaches, including adoptive cell but also immune checkpoint inhibitor (ICI)-based therapies. In the latter, antigen-specific rapid and high throughput tools to investigate MHC/antigen-specific T cell receptor (TCR) activation haven't been implemented yet. Here, we present a simple and rapid luminescence-based approach using the human papillomavirus 16 (HPV16) E711-20 peptide as model antigen and E7-TCR transgenic Jurkat.NFAT-luciferase reporter cells. Upon E7 peptide pulsing of HLA-A2+ cell lines and macrophages, an effector to target ratio dependent increase in luminescence compared to non-pulsed cells was observed after co-incubation with E7-TCR expressing Jurkat, but not with parental cells. Analogous experiments with cells expressing full-length HPV16 identified that E7-specific activation of Jurkat cells enabled detection of endogenous antigen processing and MHC-I presentation. As proof of concept, overexpression of established checkpoints/inhibitory molecules (e.g., PD-L1 or HLA-G) significantly reduced the E7-specific TCR-induced luminescence, an effect that could be restored after treatment with corresponding targeting antagonistic antibodies. Altogether, the luminescence-based method described here represents an alternative approach for the rapid evaluation of MHC-dependent antigen-specific T cell responses in vitro. It can be used as a rapid tool to evaluate the impact of the immunosuppressive tumor microenvironment or novel ICI in triggering effective T cell responses, as well as speeding up the development of novel therapeutics within the immune-oncology field.


Assuntos
Apresentação de Antígeno , Luminescência , Humanos , Antígeno HLA-A2 , Receptores de Antígenos de Linfócitos T/metabolismo , Peptídeos
19.
Front Immunol ; 14: 1287256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116002

RESUMO

In recent years, the therapeutic (re)activation of innate anticancer immunity has gained prominence, with therapeutic blocking of the interaction of Signal Regulatory Protein (SIRP)-α with its ligand CD47 yielding complete responses in refractory and relapsed B cell lymphoma patients. SIRP-α has as crucial inhibitory role on phagocytes, with e.g., its aberrant activation enabling the escape of cancer cells from immune surveillance. SIRP-α belongs to a family of paired receptors comprised of not only immune-inhibitory, but also putative immune-stimulatory receptors. Here, we report that an as yet uninvestigated SIRP family member, SIRP-beta 2 (SIRP-ß2), is strongly expressed under normal physiological conditions in macrophages and granulocytes at protein level. Endogenous expression of SIRP-ß2 on granulocytes correlated with trogocytosis of cancer cells. Further, ectopic expression of SIRP-ß2 stimulated macrophage adhesion, differentiation and cancer cell phagocytosis as well as potentiated macrophage-mediated activation of T cell Receptor-specific T cell activation. SIRP-ß2 recruited the immune activating adaptor protein DAP12 to positively regulate innate immunity, with the charged lysine 202 of SIRP-ß2 being responsible for interaction with DAP12. Mutation of lysine 202 to leucine lead to a complete loss of the increased adhesion and phagocytosis. In conclusion, SIRP-ß2 is a novel positive regulator of innate anticancer immunity and a potential costimulatory target for innate immunotherapy.


Assuntos
Antígenos de Diferenciação , Lisina , Humanos , Lisina/metabolismo , Receptores Imunológicos/metabolismo , Imunidade Inata , Macrófagos
20.
Cell Death Discov ; 9(1): 228, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37407572

RESUMO

Acute myeloid leukemia (AML) is a malignancy still associated with poor survival rates, among others, due to frequent occurrence of therapy-resistant relapse after standard-of-care treatment with cytarabine (AraC). AraC triggers apoptotic cell death, a type of cell death to which AML cells often become resistant. Therefore, therapeutic options that trigger an alternate type of cell death are of particular interest. We previously identified that the glycan-binding protein Galectin-9 (Gal-9) has tumor-selective and non-apoptotic cytotoxicity towards various types of cancer, which depended on autophagy inhibition. Thus, Gal-9 could be of therapeutic interest for (AraC-resistant) AML. In the current study, treatment with Gal-9 was cytotoxic for AML cells, including for CD34+ patient-derived AML stem cells, but not for healthy cord blood-derived CD34+ stem cells. This Gal-9-mediated cytotoxicity did not rely on apoptosis but was negatively associated with autophagic flux. Importantly, both AraC-sensitive and -resistant AML cell lines, as well as AML patient samples, were sensitive to single-agent treatment with Gal-9. Additionally, Gal-9 potentiated the cytotoxic effect of DNA demethylase inhibitor Azacytidine (Aza), a drug that is clinically used for patients that are not eligible for intensive AraC treatment. Thus, Gal-9 is a potential therapeutic agent for the treatment of AML, including AraC-resistant AML, by inducing caspase-independent cell death.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa