Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 83(1): 64-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17380499

RESUMO

Pyrolytic carbon (PYC) containing approximately 7 wt % silicon is used in most clinical mechanical heart valves where it has demonstrated a high level of blood compatibility. The Si, present as SiC, is included since it is believed to enhance durability. However, it has been suggested that SiC reduces PYC blood compatibility. In the present study, PYC valve leaflets were prepared with low, conventional, and high levels of Si. The in vitro responses of human platelets to these materials were then quantified. Platelet responses were consistent with previous reports: Adherent platelets were extremely well spread, closely followed submicron contours, and formed very few aggregates or microthrombi-like structures. No significant differences with respect to the Si concentrations were observed for platelets adherent per unit area and the numbers of thrombi-like structures. Some differences were observed with platelet morphologies and the material surface covered with platelets, although these did not vary consistently with respect to Si concentration. These results indicate that lowering (or raising) the Si alloy concentration in PYC over a reasonable range (0.54-13.5 wt % as examined here) is unlikely to improve or otherwise alter the in vivo blood compatibility of this important clinical material.


Assuntos
Ligas/farmacologia , Plaquetas/efeitos dos fármacos , Carbono/farmacologia , Silício/farmacologia , Adulto , Plaquetas/citologia , Humanos , Adesividade Plaquetária/efeitos dos fármacos
2.
J Heart Valve Dis ; 11(1): 114-20, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11843496

RESUMO

BACKGROUND AND AIMS OF THE STUDY: For implanted Björk-Shiley convexo-concave (BSCC) heart valves, structural failure of the valve's U-shaped outlet strut results in embolization of its blood flow-regulating disc (occluder), with consequent patient morbidity and mortality. After a variable and unpredictable number of cardiac cycles, one strut leg may fatigue ('single-leg separation'; SLS); subsequently the other strut leg may also fatigue, resulting in full structural failure ('outlet strut failure'; OSF). Some BSCC valves are believed to be at more risk of SLS and OSF than others. As valves may function in the SLS condition for some time before OSF occurs, several investigators have sought non-invasive methods to differentiate valves with SLS struts from valves with intact struts in order to provide a rationale for prophylaxis. Herein, we report the use of X-ray microcomputed tomography (micro-CT) to image and characterize SLS strut fractures, including fracture faces otherwise visible only by means of physical sectioning. METHODS: An X-ray micro-CT system was adapted to provide high-resolution, three-dimensional (3D) images of intact and fractured BSCC valve outlet struts in vitro. System modifications included use of a tungsten anode X-ray source to achieve sufficiently high X-ray energies to overcome attenuation within the metal structures, and a hafnium filter to minimize the imaging artifact caused by X-ray beam hardening. For rotating the valve for tomographic scanning, special alignment procedures were developed to maintain the region of interest within the field of view. Typical 3D images of the outlet struts were composed of cubic voxels, 10 microm on a side. Image analysis and display software was used to view the outlet struts and the fractures from several perspectives, including en-face images of fracture surfaces. RESULTS: 3D volume data representations of the SLS and intact outlet struts were obtained, facilitating identification of fracture location and geometry. Enface images of the fracture surfaces were also generated. Several different fracture geometries were observed, such as fractures with and without longitudinal gaps between the fracture faces, and fractures with and without lateral displacement between the faces. En-face views showed varying degrees of roughness on fracture faces. CONCLUSION: This application of micro-CT to image outlet strut fractures in BSCC valve explants demonstrates the value of this method for fracture characterization in vitro, including visualization of fracture faces of SLS struts without physical sectioning. Although the method is not suitable for clinical use because it requires high-intensity X-rays, micro-CT can serve as a tool to understand further any failure mechanisms, and to aid the development of clinical differentiation methods.


Assuntos
Próteses Valvulares Cardíacas , Falha de Prótese , Tomografia Computadorizada por Raios X/métodos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa