RESUMO
Sodium glucose cotransporter 2 inhibitors (SGLT2i) constitute the only medication class that consistently prevents or attenuates human heart failure (HF) independent of ejection fraction. We have suggested earlier that the protective mechanisms of the SGLT2i Empagliflozin (EMPA) are mediated through reductions in the sodium hydrogen exchanger 1 (NHE1)-nitric oxide (NO) pathway, independent of SGLT2. Here, we examined the role of SGLT2, NHE1 and NO in a murine TAC/DOCA model of HF. SGLT2 knockout mice only showed attenuated systolic dysfunction without having an effect on other signs of HF. EMPA protected against systolic and diastolic dysfunction, hypertrophy, fibrosis, increased Nppa/Nppb mRNA expression and lung/liver edema. In addition, EMPA prevented increases in oxidative stress, sodium calcium exchanger expression and calcium/calmodulin-dependent protein kinase II activation to an equal degree in WT and SGLT2 KO animals. In particular, while NHE1 activity was increased in isolated cardiomyocytes from untreated HF, EMPA treatment prevented this. Since SGLT2 is not required for the protective effects of EMPA, the pathway between NHE1 and NO was further explored in SGLT2 KO animals. In vivo treatment with the specific NHE1-inhibitor Cariporide mimicked the protection by EMPA, without additional protection by EMPA. On the other hand, in vivo inhibition of NOS with L-NAME deteriorated HF and prevented protection by EMPA. In conclusion, the data support that the beneficial effects of EMPA are mediated through the NHE1-NO pathway in TAC/DOCA-induced heart failure and not through SGLT2 inhibition.
Assuntos
Compostos Benzidrílicos , Glucosídeos , Insuficiência Cardíaca , Camundongos Knockout , Óxido Nítrico , Transdução de Sinais , Inibidores do Transportador 2 de Sódio-Glicose , Transportador 2 de Glucose-Sódio , Trocador 1 de Sódio-Hidrogênio , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/prevenção & controle , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Trocador 1 de Sódio-Hidrogênio/metabolismo , Trocador 1 de Sódio-Hidrogênio/genética , Glucosídeos/farmacologia , Compostos Benzidrílicos/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Óxido Nítrico/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/genética , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologiaRESUMO
The release of extracellular vesicles (EVs) is increased under cellular stress and cardiomyocyte damaging conditions. However, whether the cardiomyocyte-derived EVs eventually reach the systemic circulation and whether their number in the bloodstream reflects cardiac injury, remains unknown. Wild type C57B/6 and conditional transgenic mice expressing green fluorescent protein (GFP) by cardiomyocytes were studied in lipopolysaccharide (LPS)-induced systemic inflammatory response syndrome (SIRS). EVs were separated both from platelet-free plasma and from the conditioned medium of isolated cardiomyocytes of the left ventricular wall. Size distribution and concentration of the released particles were determined by Nanoparticle Tracking Analysis. The presence of GFP + cardiomyocyte-derived circulating EVs was monitored by flow cytometry and cardiac function was assessed by echocardiography. In LPS-treated mice, systemic inflammation and the consequent cardiomyopathy were verified by elevated plasma levels of TNFα, GDF-15, and cardiac troponin I, and by a decrease in the ejection fraction. Furthermore, we demonstrated elevated levels of circulating small- and medium-sized EVs in the LPS-injected mice. Importantly, we detected GFP+ cardiomyocyte-derived EVs in the circulation of control mice, and the number of these circulating GFP+ vesicles increased significantly upon intraperitoneal LPS administration (P = 0.029). The cardiomyocyte-derived GFP+ EVs were also positive for intravesicular troponin I (cTnI) and muscle-associated glycogen phosphorylase (PYGM). This is the first direct demonstration that cardiomyocyte-derived EVs are present in the circulation and that the increased number of cardiac-derived EVs in the blood reflects cardiac injury in LPS-induced systemic inflammation (SIRS).
Assuntos
Movimento Celular , Vesículas Extracelulares/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/patologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Animais , Movimento Celular/efeitos dos fármacos , Clusterina/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Glicogênio Fosforilase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Integrases/metabolismo , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Fenótipo , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia , Tamoxifeno/farmacologia , Troponina I/metabolismoRESUMO
Lipid-lowering drugs have been shown to have cardioprotective effects but may have hidden cardiotoxic properties. Therefore, here we aimed to investigate if chronic treatment with the novel lipid-lowering drug bempedoic acid (BA) exerts hidden cardiotoxic and/or cardioprotective effects in a rat model of acute myocardial infarction (AMI). Wistar rats were orally treated with BA or its vehicle for 28 days, anesthetized and randomized to three different groups (vehicle + ischemia/reperfusion (I/R), BA + I/R, and positive control vehicle + ischemic preconditioning (IPC)) and subjected to cardiac 30 min ischemia and 120 min reperfusion. IPC was performed by 3 × 5 min I/R cycles before ischemia. Myocardial function, area at risk, infarct size and arrhythmias were analyzed. Chronic BA pretreatment did not influence cardiac function or infarct size as compared to the vehicle group, while the positive control IPC significantly reduced the infarct size. The incidence of reperfusion-induced arrhythmias was significantly reduced by BA and IPC. This is the first demonstration that BA treatment does not show cardioprotective effect although moderately reduces the incidence of reperfusion-induced arrhythmias. Furthermore, BA does not show hidden cardiotoxic effect in rats with AMI, showing its safety in the ischemic/reperfused heart.
Assuntos
Precondicionamento Isquêmico Miocárdico , Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Animais , Ratos , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Cardiotoxicidade , Lipídeos/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ratos WistarRESUMO
Cardiomyopathy resistant to treatment is the most serious adverse effect of doxorubicin (dox). The mechanisms of dox-induced cardiomyopathy (DCM) have been extensively studied in dilated forms of DCM. However, efficient treatment did not emerge. The aim of the present work was to revisit the experimental model of DCM in rats, to define phenotype/s and associate them to the changes in cardiac transcriptome. Male Wistar rats equipped with radiotelemetry device, were randomized in DOX group (5 mg/0,5 mL/kg, IV dox; n = 18) and CONT group (0,5 mL/kg IV saline; n = 6). Echocardiography, autonomic spectral markers and baroreceptor reflex evaluation was performed prior to, and after treatment. Blood samples were collected at the end of experimentation. Cardiac, renal and hepatic tissues were analysed post-mortem by histology. Changes in expression of key cardiac genes affected by dox were assessed by RT-qPCR. Phenotypes were identified by clustering non-redundant features using four different algorithms averaged by evidence accumulation cluster technique. The results emphasize the existence of two major phenotypes of DCM with comparably high mortality rates: phenotype 1 characterized by, left ventricular (LV) dilatation, thinning of LV posterior wall, reduced LV ejection fraction (LVEF) and fractional shortening (LVFS), decreased HR variability (HRV), decreased baroreceptor effectiveness index (BEI) and increased NT-proBNP; and phenotype 2 with LV hypertrophy - increased LV mass, preserved LVEF, LVFS, no changes in HRV and BEI and moderate NT-proBNP increase. Both phenotypes exhibited a genetic shift to a new-born program.
Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiomiopatias/classificação , Cardiomiopatias/genética , Mapeamento Cromossômico/métodos , Doxorrubicina/toxicidade , Animais , Cardiomiopatias/induzido quimicamente , Masculino , Distribuição Aleatória , Ratos , Ratos WistarRESUMO
Cardioprotection against ischemia/reperfusion injury is still an unmet clinical need. The transient activation of Toll-like receptors (TLRs) has been implicated in cardioprotection, which may be achieved by treatment with blood-derived extracellular vesicles (EVs). However, since the isolation of EVs from blood takes considerable effort, the aim of our study was to establish a cellular model from which cardioprotective EVs can be isolated in a well-reproducible manner. EV release was induced in HEK293 cells with calcium ionophore A23187. EVs were characterized and cytoprotection was assessed in H9c2 and AC16 cell lines. Cardioprotection afforded by EVs and its mechanism were investigated after 16 h simulated ischemia and 2 h reperfusion. The induction of HEK293 cells by calcium ionophore resulted in the release of heterogenous populations of EVs. In H9c2 and AC16 cells, stressEVs induced the downstream signaling of TLR4 and heme oxygenase 1 (HO-1) expression in H9c2 cells. StressEVs decreased necrosis due to simulated ischemia/reperfusion injury in H9c2 and AC16 cells, which was independent of TLR4 induction, but not that of HO-1. Calcium ionophore-induced EVs exert cytoprotection by inducing HO-1 in a TLR4-independent manner.
Assuntos
Exossomos/metabolismo , Heme Oxigenase-1/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Calcimicina/farmacologia , Ionóforos de Cálcio/farmacologia , Morte Celular , Exossomos/efeitos dos fármacos , Células HEK293 , Heme Oxigenase-1/genética , Humanos , Camundongos , Ratos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismoRESUMO
AIMS: Heart failure with reduced ejection fraction (HFrEF) is a leading cause of death worldwide; thus, therapeutic improvements are needed. In vivo preclinical models are essential to identify molecular drug targets for future therapies. Transverse aortic constriction (TAC) is a well-established model of HFrEF; however, highly experienced personnel are needed for the surgery, and several weeks of follow-up are necessary to develop HFrEF. To this end, we aimed (i) to develop an easy-to-perform mouse model of HFrEF by treating Balb/c mice with angiotensin-II (Ang-II) for 2 weeks by minipump and (ii) to compare its cardiac phenotype and transcriptome to the well-established TAC model of HFrEF in C57BL/6J mice. METHODS: Mortality and gross pathological data, cardiac structural and functional characteristics assessed by echocardiography and immunohistochemistry and differential gene expression obtained by RNA-sequencing and gene-ontology analyses were used to characterize and compare the two models. To achieve statistical comparability between the two models, changes in treatment groups related to the corresponding control were compared (ΔTAC vs. ΔAng-II). RESULTS: Compared with the well-established TAC model, chronic Ang-II treatment of Balb/c mice shares similarities in cardiac systolic functional decline (left ventricular ejection fraction: -57.25 ± 7.17% vs. -43.68 ± 5.31% in ΔTAC vs. ΔAng-II; P = 0.1794) but shows a lesser degree of left ventricular dilation (left ventricular end-systolic volume: 190.81 ± 44.13 vs. 57.37 ± 10.18 mL in ΔTAC vs. ΔAng-II; P = 0.0252) and hypertrophy (cell surface area: 58.44 ± 6.1 vs. 10.24 ± 2.87 µm2 in ΔTAC vs. ΔAng-II; P < 0.001); nevertheless, transcriptomic changes in the two HFrEF models show strong correlation (Spearman's r = 0.727; P < 0.001). In return, Ang-II treatment in Balb/c mice needs significantly less procedural time [38 min, interquartile range (IQR): 31-46 min in TAC vs. 6 min, IQR: 6-7 min in Ang-II; P < 0.001] and surgical expertise, is less of an object for peri-procedural mortality (15.8% in TAC vs. 0% in Ang-II; P = 0.105) and needs significantly shorter follow-up for developing HFrEF. CONCLUSIONS: Here, we demonstrate for the first time that chronic Ang-II treatment of Balb/c mice is also a relevant, reliable but significantly easier-to-perform preclinical model to identify novel pathomechanisms and targets in future HFrEF research.
RESUMO
Hypercholesterolemia (HC) induces, propagates and exacerbates cardiovascular diseases via various mechanisms that are yet not properly understood. Extracellular vesicles (EVs) are involved in the pathomechanism of these diseases. To understand how circulating or cardiac-derived EVs could affect myocardial functions, we analyzed the metabolomic profile of circulating EVs, and we performed an in-depth analysis of cardiomyocyte (CM)-derived EVs in HC. Circulating EVs were isolated with Vezics technology from male Wistar rats fed with high-cholesterol or control chow. AC16 human CMs were treated with Remembrane HC supplement and EVs were isolated from cell culture supernatant. The biophysical properties and the protein composition of CM EVs were analyzed. THP1-ASC-GFP cells were treated with CM EVs, and monocyte activation was measured. HC diet reduced the amount of certain phosphatidylcholines in circulating EVs, independently of their plasma level. HC treatment significantly increased EV secretion of CMs and greatly modified CM EV proteome, enriching several proteins involved in tissue remodeling. Regardless of the treatment, CM EVs did not induce the activation of THP1 monocytes. In conclusion, HC strongly affects the metabolome of circulating EVs and dysregulates CM EVs, which might contribute to HC-induced cardiac derangements.
Assuntos
Vesículas Extracelulares , Hipercolesterolemia , Miócitos Cardíacos , Ratos Wistar , Vesículas Extracelulares/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Animais , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Hipercolesterolemia/sangue , Masculino , Ratos , Humanos , Monócitos/metabolismoRESUMO
AIMS: Remote ischaemic preconditioning (RIPC) is a robust cardioprotective intervention in preclinical studies. To establish a working and efficacious RIPC protocol in our laboratories, we performed randomized, blinded in vivo studies in three study centres in rats, with various RIPC protocols. To verify that our experimental settings are in good alignment with in vivo rat studies showing cardioprotection by limb RIPC, we performed a systematic review and meta-analysis. In addition, we investigated the importance of different study parameters. METHODS AND RESULTS: Male Wistar rats were subjected to 20-45 min cardiac ischaemia followed by 120 min reperfusion with or without preceding RIPC by 3 or 4 × 5-5 min occlusion/reperfusion of one or two femoral vessels by clamping, tourniquet, or pressure cuff. RIPC did not reduce infarct size (IS), microvascular obstruction, or arrhythmias at any study centres. Systematic review and meta-analysis focusing on in vivo rat models of myocardial ischaemia/reperfusion injury with limb RIPC showed that RIPC reduces IS by 21.28% on average. In addition, the systematic review showed methodological heterogeneity and insufficient reporting of study parameters in a high proportion of studies. CONCLUSION: We report for the first time the lack of cardioprotection by RIPC in rats, assessed in individually randomized, blinded in vivo studies, involving three study centres, using different RIPC protocols. These results are in discrepancy with the meta-analysis of similar in vivo rat studies; however, no specific methodological reason could be identified by the systematic review, probably due to the overall insufficient reporting of several study parameters that did not improve over the past two decades. These results urge for publication of more well-designed and well-reported studies, irrespective of the outcome, which are required for preclinical reproducibility, and the development of clinically translatable cardioprotective interventions.
Assuntos
Precondicionamento Isquêmico , Traumatismo por Reperfusão Miocárdica , Ratos , Masculino , Animais , Ratos Wistar , Reprodutibilidade dos Testes , Precondicionamento Isquêmico/métodos , Traumatismo por Reperfusão Miocárdica/prevenção & controleRESUMO
Clinical observations are highly inconsistent with the use of the antidiabetic rosiglitazone regarding its associated increased risk of myocardial infarction. This may be due to its hidden cardiotoxic properties that have only become evident during post-marketing studies. Therefore, we aimed to investigate the hidden cardiotoxicity of rosiglitazone in ischemia/reperfusion (I/R) injury models. Rats were treated orally with either 0.8 mg/kg/day rosiglitazone or vehicle for 28 days and subjected to I/R with or without cardioprotective ischemic preconditioning (IPC). Rosiglitazone did not affect mortality, arrhythmia score, or infarct size during I/R. However, rosiglitazone abolished the antiarrhythmic effects of IPC. To investigate the direct effect of rosiglitazone on cardiomyocytes, we utilized adult rat cardiomyocytes (ARCMs), AC16, and differentiated AC16 (diffAC16) human cardiac cell lines. These were subjected to simulated I/R in the presence of rosiglitazone. Rosiglitazone improved cell survival of ARCMs at 0.3 µM. At 0.1 and 0.3 µM, rosiglitazone improved cell survival of AC16s but not that of diffAC16s. This is the first demonstration that chronic administration of rosiglitazone does not result in major hidden cardiotoxic effects in myocardial I/R injury models. However, the inhibition of the antiarrhythmic effects of IPC may have some clinical relevance that needs to be further explored.
RESUMO
AIMS: Interleukin-1ß (IL-1ß) is an important pathogenic factor in cardiovascular diseases including chronic heart failure (HF). The CANTOS trial highlighted that inflammasomes as primary sources of IL-1 ß are promising new therapeutic targets in cardiovascular diseases. Therefore, we aimed to assess inflammasome activation in failing hearts to identify activation patterns of inflammasome subtypes as sources of IL-1ß. METHODS AND RESULTS: Out of the four major inflammasome sensors tested, expression of the inflammasome protein absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4) increased in human HF regardless of the aetiology (ischaemic or dilated cardiomyopathy), while the NLRP1/NALP1 and NLRP3 (NLR family, pyrin domain containing 1 and 3) inflammasome showed no change in HF samples. AIM2 expression was primarily detected in monocytes/macrophages of failing hearts. Translational animal models of HF (pressure or volume overload, and permanent coronary artery ligation in rat, as well as ischaemia/reperfusion-induced HF in pigs) demonstrated activation pattern of AIM2 similar to that of observed in end-stages of human HF. In vitro AIM2 inflammasome activation in human Tohoku Hospital Pediatrics-1 (THP-1) monocytic cells and human AC16 cells was significantly reduced by pharmacological blockade of pannexin-1 channels by the clinically used uricosuric drug probenecid. Probenecid was also able to reduce pressure overload-induced mortality and restore indices of disease severity in a rat chronic HF model in vivo. CONCLUSIONS: This is the first report showing that AIM2 and NLRC4 inflammasome activation contribute to chronic inflammation in HF and that probenecid alleviates chronic HF by reducing inflammasome activation. The present translational study suggests the possibility of repositioning probenecid for HF indications.
Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Insuficiência Cardíaca/metabolismo , Inflamassomos/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Superfície Celular/metabolismo , Adolescente , Adulto , Idoso , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Estudos de Casos e Controles , Conexinas/antagonistas & inibidores , Conexinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Inflamassomos/imunologia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Probenecid/farmacologia , Ratos Wistar , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Transdução de Sinais , Sus scrofa , Células THP-1 , Função Ventricular Esquerda , Adulto JovemRESUMO
The development of heart failure is the most powerful predictor of long-term mortality in patients surviving acute myocardial infarction (MI). There is an unmet clinical need for prevention and therapy of post-myocardial infarction heart failure (post-MI HF). Clinically relevant pig models of post-MI HF are prerequisites for final proof-of-concept studies before entering into clinical trials in drug and medical device development. Here we aimed to characterize a closed-chest porcine model of post-MI HF in adult Göttingen minipigs with long-term follow-up including serial cardiac magnetic resonance imaging (CMRI) and to compare it with the commonly used Landrace pig model. MI was induced by intraluminal balloon occlusion of the left anterior descending coronary artery for 120 min in Göttingen minipigs and for 90 min in Landrace pigs, followed by reperfusion. CMRI was performed to assess cardiac morphology and function at baseline in both breeds and at 3 and 6 months in Göttingen minipigs and at 2 months in Landrace pigs, respectively. Scar sizes were comparable in the two breeds, but MI resulted in a significant decrease of left ventricular ejection fraction (LVEF) only in Göttingen minipigs, while Landrace pigs did not show a reduction of LVEF. Right ventricular (RV) ejection fraction increased in both breeds despite the negligible RV scar sizes. In contrast to the significant increase of left ventricular end-diastolic (LVED) mass in Landrace pigs at 2 months, Göttingen minipigs showed a slight increase in LVED mass only at 6 months. In summary, this is the first characterization of post-MI HF in Göttingen minipigs in comparison to Landrace pigs, showing that the Göttingen minipig model reflects post-MI HF parameters comparable to the human pathology. We conclude that the Göttingen minipig model is superior to the Landrace pig model to study the development of post-MI HF.
Assuntos
Modelos Animais de Doenças , Insuficiência Cardíaca/etiologia , Infarto do Miocárdio/complicações , Animais , Oclusão Coronária/diagnóstico por imagem , Oclusão Coronária/fisiopatologia , Feminino , Coração/diagnóstico por imagem , Coração/fisiopatologia , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Reperfusão Miocárdica , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Suínos , Porco Miniatura , Função Ventricular EsquerdaRESUMO
Little is known about the role of the neuropeptide somatostatin (SST) in myocardial ischemia/reperfusion injury and cardioprotection. Here, we investigated the direct cardiocytoprotective effect of SST on ischemia/reperfusion injury in cardiomyocyte cultures, as well as the expression of SST and its receptors in pig and human heart tissues. SST induced a bell-shaped, concentration-dependent cardiocytoprotection in both adult rat primary cardiomyocytes and H9C2 cells subjected to simulated ischemia/reperfusion injury. Furthermore, in a translational porcine closed-chest acute myocardial infarction model, ischemic preconditioning increased plasma SST-like immunoreactivity. Interestingly, SST expression was detectable at the protein, but not at the mRNA level in the pig left ventricles. SSTR1 and SSTR2, but not the other SST receptors, were detectable at the mRNA level by PCR and sequencing in the pig left ventricle. Moreover, remote ischemic conditioning upregulated SSTR1 mRNA. Similarly, SST expression was also detectable in healthy human interventricular septum samples at the protein level. Furthermore, SST-like immunoreactivity decreased in interventricular septum samples of patients with ischemic cardiomyopathy. SSTR1, SSTR2, and SSTR5 but not SST and the other SST receptors were detectable at the mRNA level by sequencing in healthy human left ventricles. In addition, in healthy human left ventricle samples, SSTR1 and SSTR2 mRNAs were expressed especially in vascular endothelial and some other cell types as detected by RNA Scope® in situ hybridization. This is the first demonstration that SST exerts a direct cardiocytoprotective effect against simulated ischemia/reperfusion injury. Moreover, SST is expressed in the heart tissue at the peptide level; however, it is likely to be of sensory neural origin since its mRNA is not detectable. SSTR1 and SSTR2 might be involved in the cardioprotective action of SST, but other mechanisms cannot be excluded.
RESUMO
Embryonic lungs must be inflated immediately after birth to establish respiration. In addition to pulmonary surfactant, recently, we have revealed lymphatic function as a previously unknown regulator of prenatal lung compliance that prepares the embryonic lung for inflation at birth. It is well-documented that the late gestation embryo performs episodic breathing-like movements called as fetal breathing movements (FBMs), but the physiological importance of these events is not clear. Here we aimed to study the physiological role of FBMs in preparation for air inflation at birth. Clp1 K/K late gestation embryos develop a progressive loss of spinal motor neurons associated with axonal degeneration and denervation of neuromuscular junctions serving as an ideal genetic model to test the possible role of FBMs. We demonstrated that Clp1 K/K newborns show impaired motor function resulting in fatal respiratory failure after birth. Next, we showed that the alveolar septa are thicker, and the alveolar area is reduced in Clp1 K/K late gestation embryos, while the expression of molecular markers of lung development are not affected. Importantly, pulmonary lymphatic vessels are dilated and the prenatal pulmonary lymphatic function is reduced in Clp1 K/K late gestation embryos. Our results have revealed that Clp1 K/K mice show impaired motor functions including FBMs, and late gestation Clp1 K/K embryos display reduced prenatal lymphatic function and impaired lung expansion represented as thickened alveolar septa and reduced alveolar area in preparation of the developing lung for inflation at birth. These findings suggest a possible mechanism that FBMs, similarly to breathing movements after birth, stimulate prenatal lymphatic function in pulmonary collecting lymphatics lacking smooth muscle coverage to prepare the developing lung for inflation and gas exchange at birth. Moreover, these results raise the possibility that stimulating FBMs during late gestation might be an effective way to reduce the risk of the development of neonatal respiratory failure.
RESUMO
There is some recent evidence that cardiac ischemia/reperfusion (I/R) injury induces intestinal damage within days, which contributes to adverse cardiovascular outcomes after myocardial infarction. However, it is not clear whether remote gut injury has any detectable early signs, and whether different interventions aiming to reduce cardiac damage are also effective at protecting the intestine. Previously, we found that chronic treatment with rofecoxib, a selective inhibitor of cyclooxygenase-2 (COX-2), limited myocardial infarct size to a comparable extent as cardiac ischemic preconditioning (IPC) in rats subjected to 30-min coronary artery occlusion and 120-min reperfusion. In the present study, we aimed to analyse the early intestinal alterations caused by cardiac I/R injury, with or without the above-mentioned infart size-limiting interventions. We found that cardiac I/R injury induced histological changes in the small intestine within 2 h, which were accompanied by elevated tissue level of COX-2 and showed positive correlation with the activity of matrix metalloproteinase-2 (MMP-2), but not of MMP-9 in the plasma. All these changes were prevented by rofecoxib treatment. By contrast, cardiac IPC failed to reduce intestinal injury and plasma MMP-2 activity, although it prevented the transient reduction in jejunal blood flow in response to cardiac I/R. Our results demonstrate for the first time that rapid development of intestinal damage follows cardiac I/R, and that two similarly effective infarct size-limiting interventions, rofecoxib treatment and cardiac IPC, have different impacts on cardiac I/R-induced gut injury. Furthermore, intestinal damage correlates with plasma MMP-2 activity, which may be a biomarker for its early diagnosis.
Assuntos
Cardiotônicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/genética , Intestino Delgado/efeitos dos fármacos , Lactonas/farmacologia , Metaloproteinase 2 da Matriz/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Sulfonas/farmacologia , Animais , Biomarcadores/sangue , Oclusão Coronária/cirurgia , Vasos Coronários/cirurgia , Ciclo-Oxigenase 2/sangue , Modelos Animais de Doenças , Esquema de Medicação , Expressão Gênica , Intestino Delgado/patologia , Precondicionamento Isquêmico/métodos , Masculino , Metaloproteinase 2 da Matriz/sangue , Metaloproteinase 9 da Matriz/sangue , Metaloproteinase 9 da Matriz/genética , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/diagnóstico , Traumatismo por Reperfusão Miocárdica/genética , Miocárdio/enzimologia , Miocárdio/patologia , Ratos , Ratos WistarRESUMO
Cardiac adverse effects are among the leading causes of the discontinuation of clinical trials and the withdrawal of drugs from the market. The novel concept of 'hidden cardiotoxicity' is defined as cardiotoxicity of a drug that manifests in the diseased (e.g. ischemic/reperfused), but not in the healthy heart or as a drug-induced deterioration of cardiac stress adaptation (e.g. ischemic conditioning). Here, we aimed to test if the cardiotoxicity of a selective COX-2 inhibitor rofecoxib that was revealed during its clinical use, i.e., increased occurrence of proarrhythmic and thrombotic events, could have been revealed in early phases of drug development by using preclinical models of ischemia/reperfusion (I/R) injury. Rats that were treated with rofecoxib or vehicle for four weeks were subjected to 30 min. coronary artery occlusion and 120 min. reperfusion with or without cardioprotection that is induced by ischemic preconditioning (IPC). Rofecoxib increased overall the arrhythmias including ventricular fibrillation (VF) during I/R. The proarrhythmic effect of rofecoxib during I/R was not observed in the IPC group. Rofecoxib prolonged the action potential duration (APD) in isolated papillary muscles, which was not seen in the simulated IPC group. Interestingly, while showing hidden cardiotoxicity manifested as a proarrhythmic effect during I/R, rofecoxib decreased the infarct size and increased the survival of adult rat cardiac myocytes that were subjected to simulated I/R injury. This is the first demonstration that rofecoxib increased acute mortality due to its proarrhythmic effect via increased APD during I/R. Rofecoxib did not interfere with the cardiprotective effect of IPC; moreover, IPC was able to protect against rofecoxib-induced hidden cardiotoxicity. These results show that cardiac safety testing with simple preclinical models of I/R injury uncovers hidden cardiotoxicity of rofecoxib and might reveal the hidden cardiotoxicity of other drugs.
Assuntos
Cardiotoxicidade/complicações , Lactonas/efeitos adversos , Traumatismo por Reperfusão/complicações , Sulfonas/efeitos adversos , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/complicações , Cardiotônicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Precondicionamento Isquêmico , Masculino , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos WistarRESUMO
Intestinal dysbiosis is linked to numerous gastrointestinal disorders, including inflammatory bowel diseases. It is a question of debate if coxibs, selective inhibitors of cyclooxygenase (COX)-2, cause dysbiosis. Therefore, in the present study, we aimed to determine the effect of long-term (four weeks) selective inhibition of COX-2 on the small intestinal microbiota in the rat. In order to avoid mucosal damage due to topical effects and inflammation-driven microbial alterations, rofecoxib, a nonacidic compound, was used. The direct inhibitory effect of rofecoxib on the growth of bacteria was ruled out in vitro. The mucosa-sparing effect of rofecoxib was confirmed by macroscopic and histological analysis, as well as by measuring the intestinal levels of cytokines and tight junction proteins. Deep sequencing of bacterial 16S rRNA revealed that chronic rofecoxib treatment had no significant influence on the composition and diversity of jejunal microbiota. In conclusion, this is the first demonstration that long-term selective inhibition of COX-2 by rofecoxib does not cause small intestinal dysbiosis in rats. Moreover, inhibition of COX-2 activity is not likely to be responsible per se for microbial alterations caused by some coxibs, but other drug-specific properties may contribute to it.
Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Disbiose/patologia , Intestino Delgado/enzimologia , Intestino Delgado/patologia , Lactonas/farmacologia , Sulfonas/farmacologia , Animais , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Celecoxib/farmacologia , Dinoprostona/biossíntese , Disbiose/microbiologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Testes de Sensibilidade Microbiana , Ratos Wistar , Fatores de TempoRESUMO
Background: Extracellular vesicles (EVs) (isolated from blood plasma) are currently being extensively researched, both as biomarkers and for their therapeutic possibilities. One challenging aspect to this research is the efficient isolation of high-purity EVs from blood plasma in quantities sufficient for in vivo experiments. In accordance with this challenge, the aim of this study was to develop an isolation method in which to separate the majority of EVs from major impurities such as lipoprotein particles and the abundant plasma proteins albumin and fibrinogen. Methods: Samples of rat blood were centrifuged to remove cells, platelets, large EVs and protein aggregates without prior filtration. Density gradient ultracentrifugation was performed by loading plasma sample onto 50, 30, and 10% iodixanol layers and then centrifuged at 120,000 ×g for 24 h. Ten fractions (F1-10) were collected from top to bottom. Fractions with the highest EV content were further purified by ultracentrifugation, size exclusion, or bind-elute chromatography. Efficiency and purity were assessed by Western blots. Morphology and size distribution of particles were examined by dynamic light scattering and electron microscopy (EM). Results: The highest band intensities of EV markers Alix, Tsg101 and CD81 were detected by Western blot in F6 of small-scale DGUC (61.5 ± 10.4%; 48.1 ± 5.8%; 41.9 ± 3.8%, respectively) at a density of 1.128-1.174 g/mL, where the presence of vesicles with a mean diameter of 38 ± 2 nm was confirmed by EM and DLS. Only 1.4 ± 0.5% of LDL and chylomicron marker, 3.0 ± 1.3% of HDL marker, and 9.9 ± 0.4% of albumin remained in the EV-rich F6. However, 32.8 ± 1.5% of the total fibrinogen beta was found in this fraction. Second-step purification by UC or SEC did not improve EV separation, while after BEC on HiScreen Capto Core 700 albumin and lipoprotein contamination were below detection limit in EV-rich fractions. However, BEC decreased efficiency of EV isolation, and fibrinogen was still present in EV-rich fractions. Conclusion: This is the first demonstration that DGUC is able to markedly reduce the lipoprotein content of EV isolates while it separates EVs with high efficiency. Moreover, isolation of lipoprotein- and albumin-free EVs from blood plasma can be achieved by DGUC followed by BEC, however, on the expense of reduced EV yield.