Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Brain ; 146(7): 2869-2884, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36624280

RESUMO

Improvements in functional genomic annotation have led to a critical mass of neurogenetic discoveries. This is exemplified in hereditary ataxia, a heterogeneous group of disorders characterised by incoordination from cerebellar dysfunction. Associated pathogenic variants in more than 300 genes have been described, leading to a detailed genetic classification partitioned by age-of-onset. Despite these advances, up to 75% of patients with ataxia remain molecularly undiagnosed even following whole genome sequencing, as exemplified in the 100 000 Genomes Project. This study aimed to understand whether we can improve our knowledge of the genetic architecture of hereditary ataxia by leveraging functional genomic annotations, and as a result, generate insights and strategies that raise the diagnostic yield. To achieve these aims, we used publicly-available multi-omics data to generate 294 genic features, capturing information relating to a gene's structure, genetic variation, tissue-specific, cell-type-specific and temporal expression, as well as protein products of a gene. We studied these features across genes typically causing childhood-onset, adult-onset or both types of disease first individually, then collectively. This led to the generation of testable hypotheses which we investigated using whole genome sequencing data from up to 2182 individuals presenting with ataxia and 6658 non-neurological probands recruited in the 100 000 Genomes Project. Using this approach, we demonstrated a high short tandem repeat (STR) density within childhood-onset genes suggesting that we may be missing pathogenic repeat expansions within this cohort. This was verified in both childhood- and adult-onset ataxia patients from the 100 000 Genomes Project who were unexpectedly found to have a trend for higher repeat sizes even at naturally-occurring STRs within known ataxia genes, implying a role for STRs in pathogenesis. Using unsupervised analysis, we found significant similarities in genomic annotation across the gene panels, which suggested adult- and childhood-onset patients should be screened using a common diagnostic gene set. We tested this within the 100 000 Genomes Project by assessing the burden of pathogenic variants among childhood-onset genes in adult-onset patients and vice versa. This demonstrated a significantly higher burden of rare, potentially pathogenic variants in conventional childhood-onset genes among individuals with adult-onset ataxia. Our analysis has implications for the current clinical practice in genetic testing for hereditary ataxia. We suggest that the diagnostic rate for hereditary ataxia could be increased by removing the age-of-onset partition, and through a modified screening for repeat expansions in naturally-occurring STRs within known ataxia-associated genes, in effect treating these regions as candidate pathogenic loci.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Adulto , Humanos , Degenerações Espinocerebelares/genética , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Ataxia/diagnóstico , Ataxia/genética , Genômica , Testes Genéticos
2.
J Neurosci Res ; 97(12): 1728-1741, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31392765

RESUMO

Dementia is now the leading cause of death in the United Kingdom, accounting for over 12% of all deaths and is the fifth most common cause of death worldwide. As treatments for heart disease and cancers improve and the population ages, the number of sufferers will only increase, with the chance of developing dementia doubling every 5 years after the age of 65. Finding an effective treatment is ever more critical to avert this pandemic health (and economic) crisis. To date, most dementia-related research has focused on the cortex and the hippocampus; however, with dementia becoming more fully recognized as aspects of diseases historically categorized as motor disorders (e.g., Parkinson's and Huntington's diseases), the role of the basal ganglia in dementia is coming to the fore. Conversely, it is highly likely that neuronal pathways in these structures traditionally considered as spared in Alzheimer's disease are also affected, particularly in later stages of the disease. In this review, we examine some of the limited evidence linking the basal ganglia to dementia.


Assuntos
Gânglios da Base/fisiopatologia , Demência/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Animais , Gânglios da Base/patologia , Demência/genética , Demência/patologia , Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Predisposição Genética para Doença , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios/fisiologia
3.
J Lipid Res ; 58(10): 1962-1976, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28818873

RESUMO

There is great individual variation in response to general anesthetics (GAs) leading to difficulties in optimal dosing and sometimes even accidental awareness during general anesthesia (AAGA). AAGA is a rare, but potentially devastating, complication affecting between 0.1% and 2% of patients undergoing surgery. The development of novel personalized screening techniques to accurately predict a patient's response to GAs and the risk of AAGA remains an unmet clinical need. In the present study, we demonstrate the principle of using a fluorescent reporter of the membrane dipole potential, di-8-ANEPPs, as a novel method to monitor anesthetic activity using a well-described inducer/noninducer pair. The membrane dipole potential has previously been suggested to contribute a novel mechanism of anesthetic action. We show that the fluorescence ratio of di-8-ANEPPs changed in response to physiological concentrations of the anesthetic, 1-chloro-1,2,2-trifluorocyclobutane (F3), but not the structurally similar noninducer, 1,2-dichlorohexafluorocyclobutane (F6), to artificial membranes and in vitro retinal cell systems. Modulation of the membrane dipole provides an explanation to overcome the limitations associated with the alternative membrane-mediated mechanisms of GA action. Furthermore, by combining this technique with noninvasive retinal imaging technologies, we propose that this technique could provide a novel and noninvasive technique to monitor GA susceptibility and identify patients at risk of AAGA.


Assuntos
Anestésicos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Lipossomos/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos
4.
Cereb Cortex ; 25(11): 4551-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25979089

RESUMO

We previously speculated that depression of cerebellar excitability using cathodal transcranial direct current stimulation (tDCS) might release extra cognitive resources via the disinhibition of activity in prefrontal cortex. The objective of the present study was to investigate whether anodal tDCS over the prefrontal cortex could similarly improve performance when cognitive demands are high. Sixty-three right-handed participants in 3 separate groups performed the Paced Auditory Serial Addition Task (PASAT) and the more difficult Paced Auditory Serial Subtraction Task (PASST), before and after 20 min of anodal, cathodal, or sham stimulation over the left dorsolateral prefrontal cortex (DLPFC). Performance was assessed in terms of the accuracy, latency, and variability of correct verbal responses. All behavioral measures significantly improved for the PASST after anodal DLPFC stimulation, but not the PASAT. There were smaller practice effects after cathodal and sham stimulation. Subjective ratings of attention and mental fatigue were unchanged by tDCS over time. We conclude that anodal stimulation over the left DLPFC can selectively improve performance on a difficult cognitive task involving arithmetic processing, verbal working memory, and attention. This result might be achieved by focally improving executive functions and/or cognitive capacity when tasks are difficult, rather than by improving levels of arousal/alertness.


Assuntos
Cognição/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adolescente , Adulto , Análise de Variância , Função Executiva/fisiologia , Feminino , Lateralidade Funcional , Humanos , Masculino , Matemática , Testes Neuropsicológicos , Tempo de Reação/fisiologia , Escala Visual Analógica , Adulto Jovem
5.
Sci Adv ; 10(26): eadk1296, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924406

RESUMO

Mutations in GBA1 cause Gaucher disease and are the most important genetic risk factor for Parkinson's disease. However, analysis of transcription at this locus is complicated by its highly homologous pseudogene, GBAP1. We show that >50% of short RNA-sequencing reads mapping to GBA1 also map to GBAP1. Thus, we used long-read RNA sequencing in the human brain, which allowed us to accurately quantify expression from both GBA1 and GBAP1. We discovered significant differences in expression compared to short-read data and identify currently unannotated transcripts of both GBA1 and GBAP1. These included protein-coding transcripts from both genes that were translated in human brain, but without the known lysosomal function-yet accounting for almost a third of transcription. Analyzing brain-specific cell types using long-read and single-nucleus RNA sequencing revealed region-specific variations in transcript expression. Overall, these findings suggest nonlysosomal roles for GBA1 and GBAP1 with implications for our understanding of the role of GBA1 in health and disease.


Assuntos
Glucosilceramidase , Pseudogenes , Humanos , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Pseudogenes/genética , Encéfalo/metabolismo , Anotação de Sequência Molecular , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Gaucher/genética , Análise de Sequência de RNA/métodos
6.
GigaByte ; 2023: gigabyte87, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637773

RESUMO

Amazon Simple Storage Service (Amazon S3) is a widely used platform for storing large biomedical datasets. Unintended data alterations can occur during data writing and transmission, altering the original content and generating unexpected results. However, no open-source and easy-to-use tool exists to verify end-to-end data integrity. Here, we present aws-s3-integrity-check, a user-friendly, lightweight, and reliable bash tool to verify the integrity of a dataset stored in an Amazon S3 bucket. Using this tool, we only needed ∼114 min to verify the integrity of 1,045 records ranging between 5 bytes and 10 gigabytes and occupying ∼935 gigabytes of the Amazon S3 cloud. Our aws-s3-integrity-check tool also provides file-by-file on-screen and log-file-based information about the status of each integrity check. To our knowledge, this tool is the only open-source one that allows verifying the integrity of a dataset uploaded to the Amazon S3 Storage quickly, reliably, and efficiently. The tool is freely available for download and use at https://github.com/SoniaRuiz/aws-s3-integrity-check and https://hub.docker.com/r/soniaruiz/aws-s3-integrity-check.

7.
Brain Commun ; 1(1): fcz022, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32274467

RESUMO

Genome-wide association studies of late-onset Alzheimer's disease risk have previously identified genes primarily expressed in microglia that form a transcriptional network. Using transgenic mouse models of amyloid deposition, we previously showed that many of the mouse orthologues of these risk genes are co-expressed and associated with amyloid pathology. In this new study, we generate an improved RNA-seq-derived network that is expressed in amyloid-responsive mouse microglia and we statistically compare this with gene-level variation in previous human Alzheimer's disease genome-wide association studies to predict at least four new risk genes for the disease (OAS1, LAPTM5, ITGAM/CD11b and LILRB4). Of the mouse orthologues of these genes Oas1a is likely to respond directly to amyloid at the transcriptional level, similarly to established risk gene Trem2, because the increase in Oas1a and Trem2 transcripts in response to amyloid deposition in transgenic mice is significantly higher than both the increase of the average microglial transcript and the increase in microglial number. In contrast, the mouse orthologues of LAPTM5, ITGAM/CD11b and LILRB4 (Laptm5, Itgam/CD11b and Lilra5) show increased transcripts in the presence of amyloid plaques similar in magnitude to the increase of the average microglial transcript and the increase in microglia number, except that Laptm5 and Lilra5 transcripts increase significantly quicker than the average microglial transcript as the plaque load becomes dense. This work suggests that genetic variability in the microglial response to amyloid deposition is a major determinant for Alzheimer's disease risk, and identification of these genes may help to predict the risk of developing Alzheimer's disease. These findings also provide further insights into the mechanisms underlying Alzheimer's disease for potential drug discovery.

8.
Mitochondrion ; 36: 114-123, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28549843

RESUMO

Coenzyme Q10 (CoQ10) is a mitochondrial-targeted antioxidant with known neuroprotective activity. Its ocular effects when co-solubilised with α-tocopherol polyethylene glycol succinate (TPGS) were evaluated. In vitro studies confirmed that CoQ10 was significantly protective in different retinal ganglion cell (RGC) models. In vivo studies in Adult Dark Agouti (DA) rats with unilateral surgically-induced ocular hypertension (OHT) treated with either CoQ10/TPGS micelles or TPGS vehicle twice daily for three weeks were performed, following which retinal cell health was assessed in vivo using DARC (Detection of Apoptotic Retinal Cells) and post-mortem with Brn3a histological assessment on whole retinal mounts. CoQ10/TPGS showed a significant neuroprotective effect compared to control with DARC (p<0.05) and Brn3 (p<0.01). Topical CoQ10 appears an effective therapy preventing RGC apoptosis and loss in glaucoma-related models.


Assuntos
Mitocôndrias/metabolismo , Neuroproteção , Fármacos Neuroprotetores/administração & dosagem , Hipertensão Ocular/patologia , Ubiquinona/análogos & derivados , Animais , Modelos Animais de Doenças , Masculino , Ratos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/fisiologia , Resultado do Tratamento , Ubiquinona/administração & dosagem , Vitamina E/administração & dosagem
9.
Front Neurol ; 7: 55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148157

RESUMO

Alzheimer's disease (AD) is the most common form of dementia affecting the growing aging population today, with prevalence expected to rise over the next 35 years. Clinically, patients exhibit a progressive decline in cognition, memory, and social functioning due to deposition of amyloid ß (Aß) protein and intracellular hyperphosphorylated tau protein. These pathological hallmarks of AD are measured either through neuroimaging, cerebrospinal fluid analysis, or diagnosed post-mortem. Importantly, neuropathological progression occurs in the eye as well as the brain, and multiple visual changes have been noted in both human and animal models of AD. The eye offers itself as a transparent medium to cerebral pathology and has thus potentiated the development of ocular biomarkers for AD. The use of non-invasive screening, such as retinal imaging and visual testing, may enable earlier diagnosis in the clinical setting, minimizing invasive and expensive investigations. It also potentially improves disease management and quality of life for AD patients, as an earlier diagnosis allows initiation of medication and treatment. In this review, we explore the evidence surrounding ocular changes in AD and consider the biomarkers currently in development for early diagnosis.

10.
Acta Neuropathol Commun ; 4(1): 86, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27535749

RESUMO

Parkinson's Disease (PD) is the second most common neurodegenerative disease worldwide, affecting 1 % of the population over 65 years of age. Dopaminergic cell death in the substantia nigra and accumulation of Lewy bodies are the defining neuropathological hallmarks of the disease. Neuronal death and dysfunction have been reported in other central nervous system regions, including the retina. Symptoms of PD typically manifest only when more than 70 % of dopaminergic cells are lost, and the definitive diagnosis of PD can only be made histologically at post-mortem, with few biomarkers available.In this study, a rotenone-induced rodent model of PD was employed to investigate retinal manifestations in PD and their usefulness in assessing the efficacy of a novel therapeutic intervention with a liposomal formulation of the PPAR-γ (Peroxisome proliferator-activated receptor gamma) agonist rosiglitazone.Retinal assessment was performed using longitudinal in vivo imaging with DARC (detection of apoptosing retinal cells) and OCT (optical coherence tomography) technologies and revealed increased RGCs (Retinal Ganglion Cells) apoptosis and a transient swelling of the retinal layers at day 20 of the rotenone insult. Follow-up of this model demonstrated characteristic histological neurodegenerative changes in the substantia nigra and striatum by day 60, suggesting that retinal changes precede the "traditional" pathological manifestations of PD. The therapeutic effect of systemic administration of different formulations of rosiglitazone was then evaluated, both in the retina and the brain. Of all treatment regimen tested, sustained release administration of liposome-encapsulated rosiglitazone proved to be the most potent therapeutic strategy, as evidenced by its significant neuroprotective effect on retinal neurons at day 20, and on nigrostriatal neurons at day 60, provided convincing evidence for its potential as a treatment for PD.Our results demonstrate significant retinal changes occurring in this model of PD. We show that rosiglitazone can efficiently protect retinal neurons from the rotenone insult, and that systemic administration of liposome-encapsulated rosiglitazone has an enhanced neuroprotective effect on the retina and CNS (Central Nervous System). To our knowledge, this is the first in vivo evidence of RGCs loss and early retinal thickness alterations in a PD model. Together, these findings suggest that retinal changes may be a good surrogate biomarker for PD, which may be used to assess new treatments both experimentally and clinically.


Assuntos
Antiparkinsonianos/farmacologia , Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Retina/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Animais , Encéfalo/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Seguimentos , PPAR gama/agonistas , Transtornos Parkinsonianos/patologia , Ratos , Retina/diagnóstico por imagem , Retina/patologia , Rosiglitazona , Rotenona , Seio Sagital Superior , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa