Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 75(18): 5897-5908, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-38864852

RESUMO

Arsenic (As) contamination of soils threatens the health of millions globally through accumulation in crops. While plants detoxify As via phytochelatin (PC) complexation and efflux of arsenite from roots, arsenite efflux mechanisms are not fully understood. Here, white lupin (Lupinus albus) was grown in semi-hydroponics, and exudation of glutathione (GSH) derivatives and PCs in response to As was measured using LC-MS/MS. Inhibiting synthesis of the PC precursor GSH with l-buthionine sulfoximine (BSO) or ABC transporters with vanadate drastically reduced (>22%) GSH derivative and PC2 exudation, but not PC3 exudation. This was accompanied by As hypersensitivity in plants treated with BSO and moderate sensitivity with vanadate treatment. Investigating As-PC complexation revealed two distinct As-PC complexes, As bound to GSH and PC2 (GS-As-PC2) and As bound to PC3 (As-PC3), in exudates of As-treated lupin plants. Vanadate inhibited As-PC exudation, while BSO inhibited both the synthesis and exudation of As-PC complexes. These results demonstrate a role for GSH derivatives and PC exudation in lupin As tolerance and reveal As-PC exudation as a new potential mechanism contributing to active As efflux in plants. Overall, this study uncovers insights into rhizosphere As detoxification with potential to help mitigate pollution and reduce As accumulation in crops.


Assuntos
Arsênio , Lupinus , Fitoquelatinas , Raízes de Plantas , Lupinus/metabolismo , Lupinus/crescimento & desenvolvimento , Fitoquelatinas/metabolismo , Arsênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/metabolismo , Estresse Fisiológico
2.
Plant Cell Environ ; 45(3): 936-954, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34392550

RESUMO

Soil contamination with toxic metalloids, such as arsenic, can represent a substantial human health and environmental risk. Some plants are thought to tolerate soil toxicity using root exudation, however, the nature of this response to arsenic remains largely unknown. Here, white lupin plants were exposed to arsenic in a semi-hydroponic system and their exudates were profiled using untargeted liquid chromatography-tandem mass spectrometry. Arsenic concentrations up to 1 ppm were tolerated and led to the accumulation of 12.9 µg As g-1 dry weight (DW) and 411 µg As g-1 DW in above-ground and belowground tissues, respectively. From 193 exuded metabolites, 34 were significantly differentially abundant due to 1 ppm arsenic, including depletion of glutathione disulphide and enrichment of phytochelatins and coumarins. Significant enrichment of phytochelatins in exudates of arsenic-treated plants was further confirmed using exudate sampling with strict root exclusion. The chemical tolerance toolkit in white lupin included nutrient acquisition metabolites as well as phytochelatins, the major intracellular metal-binding detoxification oligopeptides which have not been previously reported as having an extracellular role. These findings highlight the value of untargeted metabolite profiling approaches to reveal the unexpected and inform strategies to mitigate anthropogenic pollution in soils around the world.


Assuntos
Arsênio , Lupinus , Arsênio/metabolismo , Arsênio/toxicidade , Cumarínicos , Exsudatos e Transudatos/química , Exsudatos e Transudatos/metabolismo , Lupinus/metabolismo , Fitoquelatinas/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Solo/química
3.
BMC Plant Biol ; 15: 83, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25887556

RESUMO

BACKGROUND: Variation in the reaction wood (RW) response has been shown to be a principle component driving differences in lignocellulosic sugar yield from the bioenergy crop willow. The phenotypic cause(s) behind these differences in sugar yield, beyond their common elicitor, however, remain unclear. Here we use X-ray micro-computed tomography (µCT) to investigate RW-associated alterations in secondary xylem tissue patterning in three dimensions (3D). RESULTS: Major architectural alterations were successfully quantified in 3D and attributed to RW induction. Whilst the frequency of vessels was reduced in tension wood tissue (TW), the total vessel volume was significantly increased. Interestingly, a delay in programmed-cell-death (PCD) associated with TW was also clearly observed and readily quantified by µCT. CONCLUSIONS: The surprising degree to which the volume of vessels was increased illustrates the substantial xylem tissue remodelling involved in reaction wood formation. The remodelling suggests an important physiological compromise between structural and hydraulic architecture necessary for extensive alteration of biomass and helps to demonstrate the power of improving our perspective of cell and tissue architecture. The precise observation of xylem tissue development and quantification of the extent of delay in PCD provides a valuable and exciting insight into this bioenergy crop trait.


Assuntos
Salix/embriologia , Salix/fisiologia , Madeira/fisiologia , Xilema/fisiologia , Morte Celular , Salix/anatomia & histologia , Salix/crescimento & desenvolvimento , Tomografia Computadorizada por Raios X , Madeira/crescimento & desenvolvimento , Xilema/embriologia , Xilema/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa