Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Mol Genet ; 27(3): 559-575, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29220522

RESUMO

Shape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts from multiple geographic origins. A meta-analysis of three European GWASs identified 8 novel loci (1p36.23 ERRFI1/SLC45A1, 1p36.22 PEX14, 1p36.13 PADI3, 2p13.3 TGFA, 11p14.1 LGR4, 12q13.13 HOXC13, 17q21.2 KRTAP, and 20q13.33 PTK6), and confirmed 4 previously known ones (1q21.3 TCHH/TCHHL1/LCE3E, 2q35 WNT10A, 4q21.21 FRAS1, and 10p14 LINC00708/GATA3), all showing genome-wide significant association with hair shape (P < 5e-8). All except one (1p36.22 PEX14) were replicated with nominal significance in at least one of the 6 additional cohorts of European, Native American and East Asian origins. Three additional previously known genes (EDAR, OFCC1, and PRSS53) were confirmed at the nominal significance level. A multivariable regression model revealed that 14 SNPs from different genes significantly and independently contribute to hair shape variation, reaching a cross-validated AUC value of 0.66 (95% CI: 0.62-0.70) and an AUC value of 0.64 in an independent validation cohort, providing an improved accuracy compared with a previous model. Prediction outcomes of 2504 individuals from a multiethnic sample were largely consistent with general knowledge on the global distribution of hair shape variation. Our study thus delivers target genes and DNA variants for future functional studies to further evaluate the molecular basis of hair shape in humans.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Cabelo/metabolismo , Cabelo/fisiologia , Predisposição Genética para Doença/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética
2.
Hum Genet ; 136(7): 847-863, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28500464

RESUMO

Human skin colour is highly heritable and externally visible with relevance in medical, forensic, and anthropological genetics. Although eye and hair colour can already be predicted with high accuracies from small sets of carefully selected DNA markers, knowledge about the genetic predictability of skin colour is limited. Here, we investigate the skin colour predictive value of 77 single-nucleotide polymorphisms (SNPs) from 37 genetic loci previously associated with human pigmentation using 2025 individuals from 31 global populations. We identified a minimal set of 36 highly informative skin colour predictive SNPs and developed a statistical prediction model capable of skin colour prediction on a global scale. Average cross-validated prediction accuracies expressed as area under the receiver-operating characteristic curve (AUC) ± standard deviation were 0.97 ± 0.02 for Light, 0.83 ± 0.11 for Dark, and 0.96 ± 0.03 for Dark-Black. When using a 5-category, this resulted in 0.74 ± 0.05 for Very Pale, 0.72 ± 0.03 for Pale, 0.73 ± 0.03 for Intermediate, 0.87±0.1 for Dark, and 0.97 ± 0.03 for Dark-Black. A comparative analysis in 194 independent samples from 17 populations demonstrated that our model outperformed a previously proposed 10-SNP-classifier approach with AUCs rising from 0.79 to 0.82 for White, comparable at the intermediate level of 0.63 and 0.62, respectively, and a large increase from 0.64 to 0.92 for Black. Overall, this study demonstrates that the chosen DNA markers and prediction model, particularly the 5-category level; allow skin colour predictions within and between continental regions for the first time, which will serve as a valuable resource for future applications in forensic and anthropologic genetics.


Assuntos
DNA/genética , Polimorfismo de Nucleotídeo Único , Pigmentação da Pele/genética , População Negra/genética , Feminino , Marcadores Genéticos , Genótipo , Técnicas de Genotipagem , Cor de Cabelo/genética , Humanos , Modelos Logísticos , Masculino , Modelos Genéticos , Modelos Estatísticos , Fenótipo , Sensibilidade e Especificidade , População Branca/genética
4.
Forensic Sci Int Genet ; 43: 102152, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31518964

RESUMO

Forensic DNA Phenotyping (FDP) provides the ability to predict externally visible characteristics from minute amounts of crime scene DNA, which can help find unknown perpetrators who are typically unidentifiable via conventional forensic DNA profiling. Fundamental human genetics research has led to a better understanding of the specific DNA variants responsible for physical appearance characteristics, particularly eye, hair, and skin color. Recently, we introduced the HIrisPlex-S system for the simultaneous prediction of eye, hair, and skin color based on 41 DNA variants generated from two forensically validated SNaPshot multiplex assays using capillary electrophoresis (CE). Here we introduce massively parallel sequencing (MPS) solutions for the HIrisPlex-S (HPS) system on two MPS platforms commonly used in forensics, Ion Torrent and MiSeq, that cover all 41 DNA variants in a single assay, respectively. Additionally, we present the forensic developmental validation of the two HPS-MPS assays. The Ion Torrent MPS assay, based on Ion AmpliSeq technology, illustrated the successful generation of full HIrisPlex-S genotypic profiles from 100 pg of input control DNA, while the MiSeq MPS assay based on an in-house design yielded complete profiles from 250 pg of input DNA. Assessing simulated forensic casework samples such as saliva, hair (bulb), blood, semen, and low quantity touch DNA, as well as artificially damaged DNA samples, concordance testing, and samples from numerous species, all illustrated the ability of both versions of the HIrisPlex-S MPS assay to produce results that motivate forensic applications. By also providing an integrated bioinformatics analysis pipeline, MPS data can now be analyzed and a file generated for upload to the publically accessible HIrisPlex online webtool (https://hirisplex.erasmusmc.nl). In addition, we updated the website to accept VCF input data for those with genome sequence data. We thus provide a user-friendly and semi-automated MPS workflow from DNA sample to individual eye, hair, and skin color prediction probabilities. Furthermore, we present a 2-person mixture separation tool that not only assesses genotype reliability with regards genotyping confidence but also provides the most fitting mixture scenario for both minor and major contributors, including profile separation. We envision this MPS implementation of the HIrisPlex-S system for eye, hair, and skin color prediction from DNA as a starting point for further expanding MPS-based forensic DNA phenotyping. This may include the future addition of SNPs predictive for more externally visible characteristics, as well as SNPs for bio-geographic ancestry inference, provided the statistical framework for DNA prediction of these traits is in place.


Assuntos
Cor de Olho/genética , Técnicas de Genotipagem/instrumentação , Cor de Cabelo/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Pigmentação da Pele/genética , Animais , DNA/genética , Genótipo , Humanos , Fenótipo , Reação em Cadeia da Polimerase , Especificidade da Espécie
5.
Forensic Sci Int Genet ; 35: 123-135, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29753263

RESUMO

Forensic DNA Phenotyping (FDP), i.e. the prediction of human externally visible traits from DNA, has become a fast growing subfield within forensic genetics due to the intelligence information it can provide from DNA traces. FDP outcomes can help focus police investigations in search of unknown perpetrators, who are generally unidentifiable with standard DNA profiling. Therefore, we previously developed and forensically validated the IrisPlex DNA test system for eye colour prediction and the HIrisPlex system for combined eye and hair colour prediction from DNA traces. Here we introduce and forensically validate the HIrisPlex-S DNA test system (S for skin) for the simultaneous prediction of eye, hair, and skin colour from trace DNA. This FDP system consists of two SNaPshot-based multiplex assays targeting a total of 41 SNPs via a novel multiplex assay for 17 skin colour predictive SNPs and the previous HIrisPlex assay for 24 eye and hair colour predictive SNPs, 19 of which also contribute to skin colour prediction. The HIrisPlex-S system further comprises three statistical prediction models, the previously developed IrisPlex model for eye colour prediction based on 6 SNPs, the previous HIrisPlex model for hair colour prediction based on 22 SNPs, and the recently introduced HIrisPlex-S model for skin colour prediction based on 36 SNPs. In the forensic developmental validation testing, the novel 17-plex assay performed in full agreement with the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines, as previously shown for the 24-plex assay. Sensitivity testing of the 17-plex assay revealed complete SNP profiles from as little as 63 pg of input DNA, equalling the previously demonstrated sensitivity threshold of the 24-plex HIrisPlex assay. Testing of simulated forensic casework samples such as blood, semen, saliva stains, of inhibited DNA samples, of low quantity touch (trace) DNA samples, and of artificially degraded DNA samples as well as concordance testing, demonstrated the robustness, efficiency, and forensic suitability of the new 17-plex assay, as previously shown for the 24-plex assay. Finally, we provide an update to the publically available HIrisPlex website https://hirisplex.erasmusmc.nl/, now allowing the estimation of individual probabilities for 3 eye, 4 hair, and 5 skin colour categories from HIrisPlex-S input genotypes. The HIrisPlex-S DNA test represents the first forensically validated tool for skin colour prediction, and reflects the first forensically validated tool for simultaneous eye, hair and skin colour prediction from DNA.


Assuntos
DNA/genética , Cor de Olho/genética , Técnicas de Genotipagem/instrumentação , Cor de Cabelo/genética , Polimorfismo de Nucleotídeo Único , Pigmentação da Pele/genética , Animais , Genética Forense/métodos , Humanos , Fenótipo , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Especificidade da Espécie
6.
Forensic Sci Int Genet ; 37: 241-251, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30268682

RESUMO

Human head hair shape, commonly classified as straight, wavy, curly or frizzy, is an attractive target for Forensic DNA Phenotyping and other applications of human appearance prediction from DNA such as in paleogenetics. The genetic knowledge underlying head hair shape variation was recently improved by the outcome of a series of genome-wide association and replication studies in a total of 26,964 subjects, highlighting 12 loci of which 8 were novel and introducing a prediction model for Europeans based on 14 SNPs. In the present study, we evaluated the capacity of DNA-based head hair shape prediction by investigating an extended set of candidate SNP predictors and by using an independent set of samples for model validation. Prediction model building was carried out in 9674 subjects (6068 from Europe, 2899 from Asia and 707 of admixed European and Asian ancestries), used previously, by considering a novel list of 90 candidate SNPs. For model validation, genotype and phenotype data were newly collected in 2415 independent subjects (2138 Europeans and 277 non-Europeans) by applying two targeted massively parallel sequencing platforms, Ion Torrent PGM and MiSeq, or the MassARRAY platform. A binomial model was developed to predict straight vs. non-straight hair based on 32 SNPs from 26 genetic loci we identified as significantly contributing to the model. This model achieved prediction accuracies, expressed as AUC, of 0.664 in Europeans and 0.789 in non-Europeans; the statistically significant difference was explained mostly by the effect of one EDAR SNP in non-Europeans. Considering sex and age, in addition to the SNPs, slightly and insignificantly increased the prediction accuracies (AUC of 0.680 and 0.800, respectively). Based on the sample size and candidate DNA markers investigated, this study provides the most robust, validated, and accurate statistical prediction models and SNP predictor marker sets currently available for predicting head hair shape from DNA, providing the next step towards broadening Forensic DNA Phenotyping beyond pigmentation traits.


Assuntos
DNA/genética , Cabelo , Fenótipo , Polimorfismo de Nucleotídeo Único , Adulto , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Logísticos , Modelos Genéticos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa