Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 191(4): 2245-2255, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36583226

RESUMO

The tissue culture passage necessary for the generation of transgenic plants induces genome instability. This instability predominantly involves the uncontrolled mobilization of LTR retrotransposons (LTR-TEs), which are the most abundant class of mobile genetic elements in plant genomes. Here, we demonstrate that in conditions inductive for high LTR-TE mobilization, like abiotic stress in Arabidopsis (Arabidopsis thaliana) and callus culture in rice (Oryza sativa), application of the reverse transcriptase (RT) inhibitor known as Tenofovir substantially affects LTR-TE RT activity without interfering with plant development. We observed that Tenofovir reduces extrachromosomal DNA accumulation and prevents new genomic integrations of the active LTR-TE ONSEN in heat-stressed Arabidopsis seedlings, and transposons of O. sativa 17 and 19 (Tos17 and Tos19) in rice calli. In addition, Tenofovir allows the recovery of plants free from new LTR-TE insertions. We propose the use of Tenofovir as a tool for studies of LTR-TE transposition and for limiting genetic instabilities of plants derived from tissue culture.


Assuntos
Arabidopsis , Oryza , Retroelementos/genética , Arabidopsis/genética , Genoma de Planta/genética , Sequências Repetidas Terminais/genética , Tenofovir , Oryza/genética
2.
PLoS Pathog ; 12(2): e1005420, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26867009

RESUMO

The DNA damage response (DDR) is a conglomerate of pathways designed to detect DNA damage and signal its presence to cell cycle checkpoints and to the repair machinery, allowing the cell to pause and mend the damage, or if the damage is too severe, to trigger apoptosis or senescence. Various DDR branches are regulated by kinases of the phosphatidylinositol 3-kinase-like protein kinase family, including ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). Replication intermediates and linear double-stranded genomes of DNA viruses are perceived by the cell as DNA damage and activate the DDR. If allowed to operate, the DDR will stimulate ligation of viral genomes and will inhibit virus replication. To prevent this outcome, many DNA viruses evolved ways to limit the DDR. As part of its attack on the DDR, adenovirus utilizes various viral proteins to cause degradation of DDR proteins and to sequester the MRN damage sensor outside virus replication centers. Here we show that adenovirus evolved yet another novel mechanism to inhibit the DDR. The E4orf4 protein, together with its cellular partner PP2A, reduces phosphorylation of ATM and ATR substrates in virus-infected cells and in cells treated with DNA damaging drugs, and causes accumulation of damaged DNA in the drug-treated cells. ATM and ATR are not mutually required for inhibition of their signaling pathways by E4orf4. ATM and ATR deficiency as well as E4orf4 expression enhance infection efficiency. Furthermore, E4orf4, previously reported to induce cancer-specific cell death when expressed alone, sensitizes cells to killing by sub-lethal concentrations of DNA damaging drugs, likely because it inhibits DNA damage repair. These findings provide one explanation for the cancer-specificity of E4orf4-induced cell death as many cancers have DDR deficiencies leading to increased reliance on the remaining intact DDR pathways and to enhanced susceptibility to DDR inhibitors such as E4orf4. Thus DDR inhibition by E4orf4 contributes both to the efficiency of adenovirus replication and to the ability of E4orf4 to kill cancer cells.


Assuntos
Infecções por Adenoviridae/virologia , Adenovírus Humanos/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Proteínas Virais/metabolismo , Adenovírus Humanos/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Morte Celular , Linhagem Celular Tumoral , Reparo do DNA , Replicação do DNA , Humanos , Mutação , Fosforilação , Transdução de Sinais , Proteínas Virais/genética , Replicação Viral
3.
Plant Physiol ; 175(2): 628-640, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28864470

RESUMO

Plants have significantly more transcription factor (TF) families than animals and fungi, and plant TF families tend to contain more genes; these expansions are linked to adaptation to environmental stressors. Many TF family members bind to similar or identical sequence motifs, such as G-boxes (CACGTG), so it is difficult to predict regulatory relationships. We determined that the flanking sequences near G-boxes help determine in vitro specificity but that this is insufficient to predict the transcription pattern of genes near G-boxes. Therefore, we constructed a gene regulatory network that identifies the set of bZIPs and bHLHs that are most predictive of the expression of genes downstream of perfect G-boxes. This network accurately predicts transcriptional patterns and reconstructs known regulatory subnetworks. Finally, we present Ara-BOX-cis (araboxcis.org), a Web site that provides interactive visualizations of the G-box regulatory network, a useful resource for generating predictions for gene regulatory relations.


Assuntos
Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Ligação G-Box/genética , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes , Motivos de Nucleotídeos , Proteínas de Plantas/genética
4.
Nucleic Acids Res ; 39(15): 6414-27, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21546548

RESUMO

The adenovirus E4 open-reading-frame 4 (E4orf4) protein regulates the progression of viral infection and when expressed individually it induces non-classical apoptosis in transformed cells. Here we show that E4orf4 associates with the ATP-dependent chromatin-remodeling factor ACF that consists of a sucrose non fermenting-2h (SNF2h) ATPase and an Acf1 regulatory subunit. Furthermore, E4orf4 targets protein phosphatase 2A (PP2A) to this complex and to chromatin. Obstruction of SNF2h activity inhibits E4orf4-induced cell death, whereas knockdown of Acf1 results in enhanced E4orf4-induced toxicity in both mammalian and yeast cells, and Acf1 overexpression inhibits E4orf4's ability to downregulate early adenovirus gene expression in the context of viral infection. Knockdown of the Acf1 homolog, WSTF, inhibits E4orf4-induced cell death. Based on these results we suggest that the E4orf4-PP2A complex inhibits ACF and facilitates enhanced chromatin-remodeling activities of other SNF2h-containing complexes, such as WSTF-SNF2h. The resulting switch in chromatin remodeling determines life versus death decisions and contributes to E4orf4 functions during adenovirus infection.


Assuntos
Adenosina Trifosfatases/metabolismo , Apoptose , Proteínas Cromossômicas não Histona/metabolismo , Proteína Fosfatase 2/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Regulação para Baixo , Proteínas Fúngicas/metabolismo , Regulação Viral da Expressão Gênica , Células HEK293 , Humanos , Fatores de Transcrição/fisiologia , Proteínas Virais/antagonistas & inibidores , Leveduras/metabolismo
5.
Plant Direct ; 3(3): e00126, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31245769

RESUMO

Plants modulate their growth rates based on the environmental signals; however, it is difficult to experimentally test how natural temperature and light fluctuations affect growth, since realistic outdoor environments are difficult to replicate in controlled laboratory conditions, and it is expensive to conduct experiments in many environmentally diverse regions. In partnership with BBC Terrific Scientific, over 50 primary schools from around the UK grew spring onions outside of hydroponic growth chambers that they constructed. Over 2 weeks, students measured the height of the spring onions daily, while the hourly temperature and visibility data were determined for each school based on the UK Meteorological Office data. This rich time series data allowed us to model how plants integrate temperature and light signals to determine how much to grow, using techniques from functional data analysis. We determined that under nutrient-poor hydroponic conditions, growth of spring onion is sensitive to even a few degrees change in temperature, and is most correlated with warm nighttime temperatures, high temperatures at the start of the experiment, and light exposure near the end of the experiment. We show that scientists can leverage schools to conduct experiments that leverage natural environmental variability to develop complex models of plant-environment interactions.

6.
Nat Plants ; 5(1): 26-33, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30531940

RESUMO

Retrotransposons have played an important role in the evolution of host genomes1,2. Their impact is mainly deduced from the composition of DNA sequences that have been fixed over evolutionary time2. Such studies provide important 'snapshots' reflecting the historical activities of transposons but do not predict current transposition potential. We previously reported sequence-independent retrotransposon trapping (SIRT) as a method that, by identification of extrachromosomal linear DNA (eclDNA), revealed the presence of active long terminal repeat (LTR) retrotransposons in Arabidopsis3. However, SIRT cannot be applied to large and transposon-rich genomes, as found in crop plants. We have developed an alternative approach named ALE-seq (amplification of LTR of eclDNAs followed by sequencing) for such situations. ALE-seq reveals sequences of 5' LTRs of eclDNAs after two-step amplification: in vitro transcription and subsequent reverse transcription. Using ALE-seq in rice, we detected eclDNAs for a novel Copia family LTR retrotransposon, Go-on, which is activated by heat stress. Sequencing of rice accessions revealed that Go-on has preferentially accumulated in Oryza sativa ssp. indica rice grown at higher temperatures. Furthermore, ALE-seq applied to tomato fruits identified a developmentally regulated Gypsy family of retrotransposons. A bioinformatic pipeline adapted for ALE-seq data analyses is used for the direct and reference-free annotation of new, active retroelements. This pipeline allows assessment of LTR retrotransposon activities in organisms for which genomic sequences and/or reference genomes are either unavailable or of low quality.


Assuntos
Produtos Agrícolas/genética , Retroelementos/genética , Análise de Sequência de DNA/métodos , Sequências Repetidas Terminais , Arabidopsis/genética , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Solanum lycopersicum/genética , Oryza/genética
7.
Mol Plant ; 10(10): 1258-1273, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28893714

RESUMO

Temperature influences the distribution, range, and phenology of plants. The key transcriptional activators of heat shock response in eukaryotes, the heat shock factors (HSFs), have undergone large-scale gene amplification in plants. While HSFs are central in heat stress responses, their role in the response to ambient temperature changes is less well understood. We show here that the warm ambient temperature transcriptome is dependent upon the HSFA1 clade of Arabidopsis HSFs, which cause a rapid and dynamic eviction of H2A.Z nucleosomes at target genes. A transcriptional cascade results in the activation of multiple downstream stress-responsive transcription factors, triggering large-scale changes to the transcriptome in response to elevated temperature. H2A.Z nucleosomes are enriched at temperature-responsive genes at non-inducible temperature, and thus likely confer inducibility of gene expression and higher responsive dynamics. We propose that the antagonistic effects of H2A.Z and HSF1 provide a mechanism to activate gene expression rapidly and precisely in response to temperature, while preventing leaky transcription in the absence of an activation signal.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Nucleossomos/metabolismo , Temperatura , Aclimatação/genética , Arabidopsis/metabolismo , Cromatina/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Temperatura Alta , Regiões Promotoras Genéticas , Ligação Proteica , Ativação Transcricional , Transcriptoma
8.
J Vis Exp ; (68)2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23117279

RESUMO

Functional inactivation of gene expression in mammalian cells is crucial for the study of the contribution of a protein of interest to various pathways(1,2). However, conditional knockdown of gene expression is required in cases when constitutive knockdown is not tolerated by cells for a long period of time(3-5). Here we describe a protocol for preparation of cell lines allowing conditional knockdown of subunits of the ACF chromatin remodeling factor. These cell lines facilitate the determination of the contribution of ACF to induction of cell death by the adenovirus E4orf4 protein(6). Sequences encoding short hairpin RNAs for the Acf1 and SNF2h subunits of the ACF chromatin remodeling factor were cloned next to a doxycycline-inducible promoter in a plasmid also containing a gene for the neomycin resistance gene. Neomycin-resistant cell clones were selected in the presence of G418 and isolated. The resulting cell lines were induced by doxycycline treatment, and once Acf1 or SNF2h expression levels were reduced, the cells were transfected with a plasmid encoding E4orf4 or an empty vector. To confirm the specific effect of the shRNA constructs, Acf1 or SNF2h protein levels were restored to WT levels by cotransfection with a plasmid expressing Acf1 or SNF2h which were rendered resistant to the shRNA by introduction of silent mutations. The ability of E4orf4 to induce cell death in the various samples was determined by a DAPI assay, in which the frequency of appearance of nuclei with apoptotic morphologies in the transfected cell population was measured(7-9). The protocol described here can be utilized for determination of the functional contribution of various proteins to induction of cell death by their protein partners in cases when constitutive knockdown may be cell lethal.


Assuntos
Proteínas Cromossômicas não Histona/genética , Técnicas de Silenciamento de Genes/métodos , Proteínas Virais/genética , Morte Celular/genética , Linhagem Celular , Proteínas Cromossômicas não Histona/deficiência , Células HEK293 , Humanos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa