Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 299(7): 104868, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37257821

RESUMO

About 2% of Alzheimer's disease (AD) cases have early onset (FAD) and are caused by mutations in either Presenilins (PSEN1/2) or amyloid-ß precursor protein (APP). PSEN1/2 catalyze production of Aß peptides of different length from APP. Aß peptides are the major components of amyloid plaques, a pathological lesion that characterizes AD. Analysis of mechanisms by which PSEN1/2 and APP mutations affect Aß peptide compositions lead to the implication of the absolute or relative increase in Aß42 in amyloid-ß plaques formation. Here, to elucidate the formation of pathogenic Aß cocktails leading to amyloid pathology, we utilized FAD rat knock-in models carrying the Swedish APP (Apps allele) and the PSEN1 L435F (Psen1LF allele) mutations. To accommodate the differences in the pathogenicity of rodent and human Aß, these rat models are genetically engineered to express human Aß species as both the Swedish mutant allele and the WT rat allele (called Apph) have been humanized in the Aß-coding region. Analysis of the eight possible FAD mutant permutations indicates that the CNS levels of Aß43, rather than absolute or relative increases in Aß42, determine the onset of pathological amyloid deposition in FAD knock-in rats. Notably, Aß43 was found in amyloid plaques in late onset AD and mild cognitive impairment cases, suggesting that the mechanisms initiating amyloid pathology in FAD knock-in rat reflect disease mechanisms driving amyloid pathology in late onset AD. This study helps clarifying the molecular determinants initiating amyloid pathology and supports therapeutic interventions targeting Aß43 in AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Ratos , Animais , Humanos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/genética , Placa Amiloide/patologia , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Mutação , Secretases da Proteína Precursora do Amiloide/metabolismo
2.
Neurobiol Dis ; 184: 106227, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37454780

RESUMO

Tauopathies, including frontotemporal dementia (FTD) and Alzheimer's disease (AD), clinically present with progressive cognitive decline and the deposition of neurofibrillary tangles (NFTs) in the brain. Neurovascular compromise is also prevalent in AD and FTD however the relationship between tau and the neurovascular unit is less understood relative to other degenerative phenotypes. Current animal models confer the ability to recapitulate aspects of the CNS tauopathies, however, existing models either display overaggressive phenotypes, or do not develop neuronal loss or genuine neurofibrillary lesions. In this report, we communicate the longitudinal characterization of brain tauopathy in a novel transgenic rat model, coded McGill-R955-hTau. The model expresses the longest isoform of human P301S tau. Homozygous R955-hTau rats displayed a robust, progressive accumulation of mutated human tau leading to the detection of tau hyperphosphorylation and cognitive deficits accelerating from 14 months of age. This model features extensive tau hyperphosphorylation with endogenous tau recruitment, authentic neurofibrillary lesions, and tau-associated neuronal loss, ventricular dilation, decreased brain volume, and gliosis in aged rats. Further, we demonstrate how neurovascular integrity becomes compromised at aged life stages using a combination of electron microscopy, injection of the tracer horseradish peroxidase and immunohistochemical approaches.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doença de Pick , Tauopatias , Camundongos , Humanos , Ratos , Animais , Idoso , Ratos Transgênicos , Proteínas tau/genética , Demência Frontotemporal/patologia , Camundongos Transgênicos , Tauopatias/patologia , Doença de Alzheimer/patologia , Emaranhados Neurofibrilares/patologia , Modelos Animais de Doenças
3.
Neurobiol Dis ; 187: 106317, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37802153

RESUMO

In tauopathies such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), the microtubule associated protein tau undergoes conformational and posttranslational modifications in a gradual, staged pathological process. While brain atrophy and cognitive decline are well-established in the advanced stages of tauopathy, it is unclear how the early pathological processes manifest prior to extensive neurodegeneration. For these studies we have applied a transgenic rat model of human-like tauopathy in its heterozygous form, named McGill-R955-hTau. The goal of the present study was to investigate whether lifelong accumulation of mutated human tau could reveal the earliest tau pathological processes in a context of advanced aging, and, at stages before the overt aggregated or fibrillary tau deposition. We characterized the phenotype of heterozygous R955-hTau rats at three endpoints, 10, 18 and 24-26 months of age, focusing on markers of cognitive capabilities, progressive tau pathology, neuronal health, neuroinflammation and brain ultrastructural integrity, using immunohistochemistry and electron microscopy. Heterozygous R955-hTau transgenic rats feature a modest, life-long accumulation of mutated human tau that led to tau hyperphosphorylation and produced deficits in learning and memory tasks after 24 months of age. Such impairments coincided with more extensive tau hyperphosphorylation in the brain at residues pThr231 and with evidence of oligomerization. Importantly, aged R955-hTau rats presented evidence of neuroinflammation, detriments to myelin morphology and detectable hippocampal neuronal loss in the absence of overt neurofibrillary lesions and brain atrophy. The slow-progressing tauopathy of R955-hTau rats should allow to better delineate the temporal progression of tau pathological events and therefore to distinguish early indicators of tauopathy as having the capability to induce degenerative events in the aged CNS.


Assuntos
Doenças Neuroinflamatórias , Tauopatias , Humanos , Camundongos , Ratos , Animais , Idoso , Camundongos Transgênicos , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/metabolismo , Ratos Transgênicos , Atrofia , Modelos Animais de Doenças
4.
J Biol Chem ; 296: 100089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33434745

RESUMO

Alzheimer's disease (AD) is a neurodegenerative dementia associated with deposition of amyloid plaques and neurofibrillary tangles, formed by amyloid ß (Aß) peptides and phosphor-tau, respectively, in the central nervous system. Approximately 2% of AD cases are due to familial AD (FAD); ∼98% of cases are sporadic AD (SAD). Animal models with FAD are commonly used to study SAD pathogenesis. Because mechanisms leading to FAD and SAD may be distinct, to study SAD pathogenesis, we generated Trem2R47H knock-in rats, which carry the SAD risk factor p.R47H variant of the microglia gene triggering receptor expressed on myeloid cells 2 (TREM2). Trem2R47H rats produce human-Aß from a humanized-App rat allele because human-Aß is more toxic than rodent-Aß and the pathogenic role of the p.R47H TREM2 variant has been linked to human-Aß-clearing deficits. Using periadolescent Trem2R47H rats, we previously demonstrated that supraphysiological tumor necrosis factor-α (TNF-α) boosts glutamatergic transmission, which is excitatory, and suppresses long-term potentiation, a surrogate of learning and memory. Here, we tested the effect of the p.R47H variant on the inhibitory neurotransmitter γ-aminobutyric acid. We report that GABAergic transmission is decreased in Trem2R47H/R47H rats. This decrease is due to acute and reversible action of TNF-α and is not associated with increased human-Aß levels and AD pathology. Thus, the p.R47H variant changes the excitatory/inhibitory balance, favoring excitation. This imbalance could potentiate glutamate excitotoxicity and contribute to neuronal dysfunction, enhanced neuronal death, and neurodegeneration. Future studies will determine whether this imbalance represents an early, Aß-independent pathway leading to dementia and may reveal the AD-modifying therapeutic potential of TNF-α inhibition in the central nervous system.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Neurônios GABAérgicos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Feminino , Masculino , Glicoproteínas de Membrana/metabolismo , Doenças Neurodegenerativas/metabolismo , Ratos , Receptores Imunológicos/metabolismo , Fatores de Risco , Ácido gama-Aminobutírico/metabolismo
5.
Neurobiol Dis ; 127: 323-338, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30905766

RESUMO

The assembly of tau protein into abnormal filaments and brain cell degeneration are characteristic of a number of human neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia and parkinsonism linked to chromosome 17. Several murine models have been generated to better understand the mechanisms contributing to tau assembly and neurodegeneration. Taking advantage of the more elaborate central nervous system and higher cognitive abilities of the rat, we generated a model expressing the longest human tau isoform (2N4R) with the P301S mutation. This transgenic rat line, R962-hTau, exhibits the main features of human tauopathies, such as: age-dependent increase in inclusions comprised of aggregated-tau, neuronal loss, global neurodegeneration as reflected by brain atrophy and ventricular dilation, alterations in astrocytic and microglial morphology, and myelin loss. In addition, substantial deficits across multiple memory and learning paradigms, including novel object recognition, fear conditioning and Morris water maze tasks, were observed at the time of advanced tauopathy. These results support the concept that progressive tauopathy correlates with brain atrophy and cognitive impairment.


Assuntos
Encéfalo/patologia , Disfunção Cognitiva/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Ratos , Ratos Transgênicos , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética
7.
J Neurosci ; 33(6): 2313-25, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23392662

RESUMO

We previously demonstrated that sodium butyrate is neuroprotective in Huntington's disease (HD) mice and that this therapeutic effect is associated with increased expression of mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1/DUSP1). Here we show that enhancing MKP-1 expression is sufficient to achieve neuroprotection in lentiviral models of HD. Wild-type MKP-1 overexpression inhibited apoptosis in primary striatal neurons exposed to an N-terminal fragment of polyglutamine-expanded huntingtin (Htt171-82Q), blocking caspase-3 activation and significantly reducing neuronal cell death. This neuroprotective effect of MKP-1 was demonstrated to be dependent on its enzymatic activity, being ablated by mutation of its phosphatase domain and being attributed to inhibition of specific MAP kinases (MAPKs). Overexpression of MKP-1 prevented the polyglutamine-expanded huntingtin-induced activation of c-Jun N-terminal kinases (JNKs) and p38 MAPKs, whereas extracellular signal-regulated kinase (ERK) 1/2 activation was not altered by either polyglutamine-expanded Htt or MKP-1. Moreover, mutants of MKP-1 that selectively prevented p38 or JNK binding confirmed the important dual contributions of p38 and JNK regulation to MKP-1-mediated neuroprotection. These results demonstrate additive effects of p38 and JNK MAPK inhibition by MKP-1 without consequence to ERK activation in this striatal neuron-based paradigm. MKP-1 also provided neuroprotection in vivo in a lentiviral model of HD neuropathology in rat striatum. Together, these data extend previous evidence that JNK- and p38-mediated pathways contribute to HD pathogenesis and, importantly, show that therapies simultaneously inhibiting both JNK and p38 signaling pathways may lead to improved neuroprotective outcomes.


Assuntos
Fosfatase 1 de Especificidade Dupla/biossíntese , Doença de Huntington/enzimologia , Doença de Huntington/prevenção & controle , MAP Quinase Quinase 4/antagonistas & inibidores , Fármacos Neuroprotetores/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Células Cultivadas , Feminino , MAP Quinase Quinase 4/metabolismo , Camundongos , Ratos , Ratos Wistar , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Front Aging Neurosci ; 14: 1040576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438008

RESUMO

Cleavage of Amyloid precursor protein by ß- and γ-secretases lead to Aß formation. The widely accepted pathogenic model states that these mutations cause AD via an increase in Aß formation and accumulation of Aß in Amyloid plaques. APP mutations cause early onset familial forms of Alzheimer's disease (FAD) in humans. We generated App-Swedish (Apps ) knock-in rats, which carry a pathogenic APP mutation in the endogenous rat App gene. This mutation increases ß-secretase processing of APP leading to both augmented Aß production and facilitation of glutamate release in Apps/s rats, via a ß-secretase and APP-dependent glutamate release mechanism. Here, we studied 11 to 14-month-old male and female Apps/s rats. To determine whether the Swedish App mutation leads to behavioral deficits, Apps/s knock-in rats were subjected to behavioral analysis using the IntelliCage platform, an automated behavioral testing system. This system allows behavioral assessment in socially housed animals reflecting a more natural, less stress-inducing environment and eliminates experimenter error and bias while increasing precision of measurements. Surprisingly, a spatial discrimination and flexibility task that can reveal deficits in higher order brain function showed that Apps/s females, but not Apps/s male rats, performed significantly worse than same sex controls. Moreover, female control rats performed significantly better than control and Apps/s male rats. The Swedish mutation causes a significant increase in Aß production in 14-month-old animals of both sexes. Yet, male and female Apps/s rats showed no evidence of AD-related amyloid pathology. Finally, Apps/s rats did not show signs of significant neuroinflammation. Given that the APP Swedish mutation causes alterations in glutamate release, we analyzed Long-term potentiation (LTP), a long-lasting form of synaptic plasticity that is a cellular basis for learning and memory. Strikingly, LTP was significantly increased in Apps/s control females compared to both Apps/s sexes and control males. In conclusion, this study shows that behavioral performances are sex and App-genotype dependent. In addition, they are associated with LTP values and not Aß or AD-related pathology. These data, and the failures of anti-Aß therapies in humans, suggest that alternative pathways, such as those leading to LTP dysfunction, should be targeted for disease-modifying AD therapy.

9.
Mol Neurobiol ; 57(1): 290-301, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31327126

RESUMO

BDNF-oxytocin interactions in the brain are implicated in mammalian maternal behavior. We found that BDNF gene expression is increased in the hippocampus of rat mothers that show increased pup licking/grooming (high LG mothers) compared to low LG mothers. High LG mothers also showed increased BDNF protein levels in the nucleus accumbens (nAcc). Immunoneutralization of BDNF in the nAcc eliminated the differences in pup LG between high and low LG mothers. Oxytocin antagonist in the ventral hippocampus significantly decreased the frequency of maternal LG behavior. Oxytocin antagonist significantly prevented the oxytocin-induced BDNF gene expression in primary hippocampal cell cultures. We suggest that oxytocin-induced regulation of BDNF in the nAcc provides a neuroendocrine basis for both individual differences in maternal behavior and resilience to the stress of reproduction in female mammals.


Assuntos
Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Núcleo Accumbens/metabolismo , Recompensa , Comportamento Social , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Regulação da Expressão Gênica , Hipocampo/metabolismo , Comportamento Materno , Ocitocina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Long-Evans
10.
FEBS Lett ; 580(13): 3179-84, 2006 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-16684535

RESUMO

Three methylated bases, 5-methylcytosine, N4-methylcytosine and N6-methyladenine (m6A), can be found in DNA. However, to date, only 5-methylcytosine has been detected in mammalian genomes. To reinvestigate the presence of m6A in mammalian DNA, we used a highly sensitive method capable of detecting one N6-methyldeoxyadenosine per million nucleosides. Our results suggest that the total mouse genome contains, if any, less than 10(3) m6A. Experiments were next performed on PRED28, a putative mammalian N6-DNA methyltransferase. The murine PRED28 encodes two alternatively spliced RNA. However, although recombinant PRED28 proteins are found in the nucleus, no evidence for an adenine-methyltransferase activity was detected.


Assuntos
Adenina/análogos & derivados , DNA Mitocondrial/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Adenina/análise , Adenina/metabolismo , Processamento Alternativo , Animais , Clonagem Molecular , DNA Mitocondrial/química , Genoma , Camundongos , Mitocôndrias/enzimologia
11.
Sci Rep ; 6: 34051, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27681803

RESUMO

General DNA hypomethylation is associated with Alzheimer's disease (AD), but it is unclear when DNA hypomethylation starts or plays a role in AD pathology or whether DNA re-methylation would rescue early amyloid-related cognitive impairments. In an APP transgenic mouse model of AD-like amyloid pathology we found that early intraneuronal amyloid beta build-up is sufficient to unleash a global and beta-site amyloid precursor protein cleaving enzyme 1 (bace-1) DNA demethylation in AD-vulnerable brain regions. S-adenosylmethionine administration at these early stages abolished this hypomethylation, diminished the amyloid pathology and restored cognitive capabilities. To assess a possible human significance of findings, we examined the methylation at 12 CpGs sites in the bace-1 promoter, using genome-wide DNA methylation data from 740 postmortem human brains. Thus, we found significant associations of bace-1 promoter methylation with ß-amyloid load among persons with AD dementia, and PHFtau tangle density. Our results support a plausible causal role for the earliest amyloid beta accumulation to provoke DNA hypomethylation, influencing AD pathological outcomes.

12.
Biol Psychiatry ; 72(7): 528-36, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22592058

RESUMO

BACKGROUND: Mood disorders are polygenic disorders in which the alteration of several susceptibility genes results in dysfunctional mood regulation. However, the molecular mechanisms underlying their transcriptional dysregulation are still unclear. The transcription factor cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) have been implicated in rodent models of depression. We previously provided evidence that Bdnf expression critically rely on a potent CREB coactivator called CREB-regulated transcription coactivator 1 (CRTC1). METHODS: To further evaluate the role of CRTC1 in the brain, we generated a knockout mouse line and analyzed its behavioral and molecular phenotype. RESULTS: We found that mice lacking CRTC1 associate neurobehavioral endophenotypes related to mood disorders. Crtc1(-/-) mice exhibit impulsive aggressiveness, social withdrawal, and decreased sexual motivation, together with increased behavioral despair, anhedonia, and anxiety-related behavior in the novelty-induced hypophagia test. They also present psychomotor retardation as well as increased emotional response to stressful events. Crtc1(-/-) mice have a blunted response to the antidepressant fluoxetine in behavioral despair paradigms, whereas fluoxetine normalizes their aggressiveness and their behavioral response in the novelty-induced hypophagia test. Crtc1(-/-) mice strikingly show, in addition to a reduced dopamine and serotonin turnover in the prefrontal cortex, a concomitant decreased expression of several susceptibility genes involved in neuroplasticity, including Bdnf, its receptor TrkB, the nuclear receptors Nr4a1-3, and several other CREB-regulated genes. CONCLUSIONS: Collectively, these findings support a role for the CRTC1-CREB pathway in mood disorders etiology and behavioral response to antidepressants and identify CRTC1 as an essential coactivator of genes involved in mood regulation.


Assuntos
Agressão/fisiologia , Transtorno Depressivo/genética , Regulação da Expressão Gênica/genética , Plasticidade Neuronal/genética , Transdução de Sinais/genética , Fatores de Transcrição/deficiência , Agressão/efeitos dos fármacos , Animais , Antidepressivos de Segunda Geração/farmacologia , Antidepressivos de Segunda Geração/uso terapêutico , Proteínas de Arabidopsis/metabolismo , Monoaminas Biogênicas/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Corticosterona/sangue , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Eletrochoque/efeitos adversos , Ensaio de Imunoadsorção Enzimática , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Medo/efeitos dos fármacos , Medo/psicologia , Feminino , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Preferências Alimentares/efeitos dos fármacos , Preferências Alimentares/fisiologia , Elevação dos Membros Posteriores , Transferases Intramoleculares/metabolismo , Masculino , Comportamento Materno/efeitos dos fármacos , Comportamento Materno/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Comportamento de Nidação/efeitos dos fármacos , Comportamento de Nidação/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Sexual Animal/fisiologia , Transdução de Sinais/efeitos dos fármacos , Comportamento Social , Natação/psicologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa