Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Mammary Gland Biol Neoplasia ; 24(2): 139-147, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30684066

RESUMO

The human female breast gland is composed of branching epithelial ducts that extend from the nipple towards the terminal duct lobular units (TDLUs), which are the functional, milk-producing units of the gland and the site of origin of most breast cancers. The epithelium of ducts and TDLUs is composed of an inner layer of polarized luminal epithelial cells and an outer layer of contractile myoepithelial cells, separated from the vascular-rich stroma by a basement membrane. The luminal- and myoepithelial cells share an origin and in recent years, there has been increasing understanding of how these cell types interact and how they contribute to breast cancer. Accumulating evidence links stem/or progenitor cells in the mammary/breast gland to breast cancer. In that regard, much knowledge has been gained from studies in mice due to specific strains that have allowed for gene knock out/in studies and lineage tracing of cellular fates. However, there is a large histologic difference between the human female breast gland and the mouse mammary gland that necessitates that research needs to be done on human material where primary cultures are important due to their close relation to the tissue of origin. However, due to difficulties of long-term cultures and lack of access to material, human cell lines are of great importance to bridge the gap between studies on mouse mammary gland and human primary breast cells. In this review, we describe D492, a breast epithelial progenitor cell line that can generate both luminal- and myoepithelial cells in culture, and in 3D culture it forms branching ducts similar to TDLUs. We have applied D492 and its daughter cell lines to explore cellular and molecular mechanisms of branching morphogenesis and cellular plasticity including EMT and MET. In addition to discussing the application of D492 in studying normal morphogenesis, we will also discuss how this cell line has been used to study breast cancer progression.


Assuntos
Neoplasias da Mama/patologia , Transformação Celular Neoplásica/patologia , Células Epiteliais/fisiologia , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Células-Tronco/fisiologia , Técnicas de Cultura de Células/métodos , Linhagem Celular , Plasticidade Celular , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/patologia , MicroRNAs/metabolismo , Morfogênese/fisiologia , Receptor ErbB-2/metabolismo
2.
PLoS Comput Biol ; 12(6): e1004924, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27253373

RESUMO

Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Receptores ErbB/metabolismo , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Receptor Cross-Talk/fisiologia , Linhagem Celular , Simulação por Computador , Humanos , Transdução de Sinais/fisiologia
3.
J Mammary Gland Biol Neoplasia ; 21(3-4): 139-148, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27815674

RESUMO

Understanding the complex events leading to formation of an epithelial-based organ such as the breast requires a detailed insight into the crosstalk between epithelial and stromal compartments. These interactions occur both through heterotypic cellular interactions and between cells and matrix components. While in vivo models may partially capture these complex interactions, there is a need for in- vitro models to study these events. In this review we discuss cell-cell interactions in breast development focusing on the stem cell niche and branching morphogenesis. Given the recent understanding that the basic developmental events underlying branching morphogenesis are closely related to pathways important to cancer progression, i.e. epithelial plasticity and epithelial to mesenchymal transition (EMT), we will also discuss aspects relevant to cancer progression. In cancer, the adoption of mesenchymal phenotype by the malignant cells allows stromal invasion and subsequent intravasation to blood- or lymphatic vessels, a route that is a prerequisite for metastasis. A number of publications have demonstrated that tumor initiating cells, sometimes referred to as cancer stem cells adapt an EMT phenotype that renders them more resistant to apoptosis and drug therapy. The mechanism behind this phenomenon is currently unknown but this may partially explain relapse in breast cancer patients. Increased understanding of branching morphogenesis in the breast gland and the regulation of EMT and its reverse process mesenchymal to epithelial transition (MET) may hold the keys for future development of methods/drugs that neutralize the invading properties of cancer cells.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Células Epiteliais/patologia , Morfogênese/fisiologia , Animais , Progressão da Doença , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Humanos , Células-Tronco Neoplásicas/patologia
4.
Dev Biol ; 403(2): 150-61, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25967125

RESUMO

The epithelial compartment of the breast contains two lineages, the luminal- and the myoepithelial cells. D492 is a breast epithelial cell line with stem cell properties that forms branching epithelial structures in 3D culture with both luminal- and myoepithelial differentiation. We have recently shown that D492 undergo epithelial to mesenchymal transition (EMT) when co-cultured with endothelial cells. This 3D co-culture model allows critical analysis of breast epithelial lineage development and EMT. In this study, we compared the microRNA (miR) expression profiles for D492 and its mesenchymal-derivative D492M. Suppression of the miR-200 family in D492M was among the most profound changes observed. Exogenous expression of miR-200c-141 in D492M reversed the EMT phenotype resulting in gain of luminal but not myoepithelial differentiation. In contrast, forced expression of ∆Np63 in D492M restored the myoepithelial phenotype only. Co-expression of miR-200c-141 and ∆Np63 in D492M restored the branching morphogenesis in 3D culture underlining the requirement for both luminal and myoepithelial elements for obtaining full branching morphogenesis in breast epithelium. Introduction of a miR-200c-141 construct in both D492 and D492M resulted in resistance to endothelial induced EMT. In conclusion, our data suggests that expression of miR-200c-141 and ∆Np63 in D492M can reverse EMT resulting in luminal- and myoepithelial differentiation, respectively, demonstrating the importance of these molecules in epithelial integrity in the human breast.


Assuntos
Mama/citologia , Células Epiteliais/citologia , MicroRNAs/metabolismo , Mama/metabolismo , Diferenciação Celular , Linhagem Celular , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Células-Tronco/citologia , Células-Tronco/metabolismo
5.
BMC Genomics ; 13: 566, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23102236

RESUMO

BACKGROUND: The organization of higher order chromatin is an emerging epigenetic mechanism for understanding development and disease. We and others have previously observed dynamic changes during differentiation and oncogenesis in large heterochromatin domains such as Large Organized Chromatin K (lysine) modifications (LOCKs), of histone H3 lysine-9 dimethylation (H3K9me2) or other repressive histone posttranslational modifications. The microstructure of these regions has not previously been explored. RESULTS: We analyzed the genome-wide distribution of H3K9me2 in two human pluripotent stem cell lines and three differentiated cells lines. We identified > 2,500 small regions with very low H3K9me2 signals in the body of LOCKs, which were termed as euchromatin islands (EIs). EIs are 6.5-fold enriched for DNase I Hypersensitive Sites and 8-fold enriched for the binding of CTCF, the major organizer of higher-order chromatin. Furthermore, EIs are 2-6 fold enriched for differentially DNA-methylated regions associated with tissue types (T-DMRs), reprogramming (R-DMRs) and cancer (C-DMRs). Gene ontology (GO) analysis suggests that EI-associated genes are functionally related to organ system development, cell adhesion and cell differentiation. CONCLUSIONS: We identify the existence of EIs as a finer layer of epigenomic architecture within large heterochromatin domains. Their enrichment for CTCF sites and DNAse hypersensitive sites, as well as association with DMRs, suggest that EIs play an important role in normal epigenomic architecture and its disruption in disease.


Assuntos
Metilação de DNA , Eucromatina/metabolismo , Heterocromatina/metabolismo , Proteínas Repressoras/metabolismo , Fator de Ligação a CCCTC , Diferenciação Celular , Linhagem Celular , Ilhas de CpG , Epigenômica , Histonas/genética , Histonas/metabolismo , Humanos , Ligação Proteica , Proteínas Repressoras/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Sítio de Iniciação de Transcrição
6.
Mol Oncol ; 15(8): 2026-2045, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33759347

RESUMO

Cellular phenotype plasticity between the epithelial and mesenchymal states has been linked to metastasis and heterogeneous responses to cancer therapy, and remains a challenge for the treatment of triple-negative breast cancer (TNBC). Here, we used isogenic human breast epithelial cell lines, D492 and D492M, representing the epithelial and mesenchymal phenotypes, respectively. We employed a CRISPR-Cas9 loss-of-function screen targeting a 2240-gene 'druggable genome' to identify phenotype-specific vulnerabilities. Cells with the epithelial phenotype were more vulnerable to the loss of genes related to EGFR-RAS-MAPK signaling, while the mesenchymal-like cells had increased sensitivity to knockout of G2 -M cell cycle regulators. Furthermore, we discovered knockouts that sensitize to the mTOR inhibitor everolimus and the chemotherapeutic drug fluorouracil in a phenotype-specific manner. Specifically, loss of EGFR and fatty acid synthase (FASN) increased the effectiveness of the drugs in the epithelial and mesenchymal phenotypes, respectively. These phenotype-associated genetic vulnerabilities were confirmed using targeted inhibitors of EGFR (gefitinib), G2 -M transition (STLC), and FASN (Fasnall). In conclusion, a CRISPR-Cas9 loss-of-function screen enables the identification of phenotype-specific genetic vulnerabilities that can pinpoint actionable targets and promising therapeutic combinations.


Assuntos
Sistemas CRISPR-Cas , Mutação com Perda de Função , Fenótipo , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal , Everolimo/uso terapêutico , Feminino , Fluoruracila/uso terapêutico , Humanos , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
7.
Front Cell Dev Biol ; 8: 461, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612992

RESUMO

Epithelial-to-mesenchymal transition (EMT) and its reversed process mesenchymal-to-epithelial transition (MET) play a critical role in epithelial plasticity during development and cancer progression. Among important regulators of these cellular processes are non-coding RNAs (ncRNAs). The imprinted DLK1-DIO3 locus, containing numerous maternally expressed ncRNAs including the lncRNA maternally expressed gene 3 (MEG3) and a cluster of over 50 miRNAs, has been shown to be a modulator of stemness in embryonic stem cells and in cancer progression, potentially through the tumor suppressor role of MEG3. In this study we analyzed the expression pattern and functional role of ncRNAs from the DLK1-DIO3 locus in epithelial plasticity of the breast. We studied their expression in various cell types of breast tissue and revisit the role of the locus in EMT/MET using a breast epithelial progenitor cell line (D492) and its isogenic mesenchymal derivative (D492M). Marked upregulation of ncRNAs from the DLK1-DIO3 locus was seen after EMT induction in two cell line models of EMT. In addition, the expression of MEG3 and the maternally expressed ncRNAs was higher in stromal cells compared to epithelial cell types in primary breast tissue. We also show that expression of MEG3 is concomitant with the expression of the ncRNAs from the DLK1-DIO3 locus and its expression is therefore likely indicative of activation of all ncRNAs at the locus. MEG3 expression is correlated with stromal markers in normal tissue and breast cancer tissue and negatively correlated with the survival of breast cancer patients in two different cohorts. Overexpression of MEG3 using CRISPR activation in a breast epithelial cell line induced partial EMT and enriched for a basal-like phenotype. Conversely, knock down of MEG3 using CRISPR inhibition in a mesenchymal cell line reduced the mesenchymal and basal-like phenotype of the cell line. In summary our study shows that maternally expressed ncRNAs are markers of EMT and suggests that MEG3 is a novel regulator of EMT/MET in breast tissue. Nevertheless, further studies are needed to fully dissect the molecular pathways influenced by non-coding RNAs at the DLK1-DIO3 locus in breast tissue.

8.
Mech Dev ; 155: 34-47, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30508578

RESUMO

MicroRNAs regulate developmental events such as branching morphogenesis, epithelial to mesenchymal transition (EMT) and its reverse process mesenchymal to epithelial transition (MET). In this study, we performed small RNA sequencing of a breast epithelial progenitor cell line (D492), and its mesenchymal derivative (D492M) cultured in three-dimensional microenvironment. Among the most downregulated miRNAs in D492M was miR-203a, a miRNA that plays an important role in epithelial differentiation. Increased expression of miR-203a was seen in D492, concomitant with increased complexity of branching. When miR-203a was overexpressed in D492M, a partial reversion towards epithelial phenotype was seen. Gene expression analysis of D492M and D492MmiR-203a revealed peroxidasin, a collagen IV cross-linker, as the most significantly downregulated gene in D492MmiR-203a. Collectively, we demonstrate that miR-203a expression temporally correlates with branching morphogenesis and is suppressed in D492M. Overexpression of miR-203a in D492M induces a partial MET and reduces the expression of peroxidasin. Furthermore, we demonstrate that miR-203a is a novel repressor of peroxidasin. MiR-203-peroxidasin axis may be an important regulator in branching morphogenesis, EMT/MET and basement membrane remodeling.


Assuntos
Mama/fisiologia , Transição Epitelial-Mesenquimal/genética , Proteínas da Matriz Extracelular/genética , MicroRNAs/genética , Peroxidase/genética , Células-Tronco/fisiologia , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Regulação para Baixo/genética , Células Epiteliais/fisiologia , Feminino , Expressão Gênica/fisiologia , Células HEK293 , Humanos , Morfogênese/fisiologia , Transdução de Sinais/genética , Peroxidasina
9.
Cell Death Dis ; 8(5): e2769, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492548

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell-cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype.


Assuntos
Anoikis , Comunicação Celular , Células Epiteliais/enzimologia , Regulação Enzimológica da Expressão Gênica , Glândulas Mamárias Humanas/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/biossíntese , Adesão Celular , Linhagem Celular , Feminino , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética
10.
JAMA Psychiatry ; 73(5): 506-14, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27074206

RESUMO

IMPORTANCE: DNA methylation may play an important role in schizophrenia (SZ), either directly as a mechanism of pathogenesis or as a biomarker of risk. OBJECTIVE: To scan genome-wide DNA methylation data to identify differentially methylated CpGs between SZ cases and controls. DESIGN, SETTING, AND PARTICIPANTS: Epigenome-wide association study begun in 2008 using DNA methylation levels of 456 513 CpG loci measured on the Infinium HumanMethylation450 array (Illumina) in a consortium of case-control studies for initial discovery and in an independent replication set. Primary analyses used general linear regression, adjusting for age, sex, race/ethnicity, smoking, batch, and cell type heterogeneity. The discovery set contained 689 SZ cases and 645 controls (n = 1334), from 3 multisite consortia: the Consortium on the Genetics of Endophenotypes in Schizophrenia, the Project among African-Americans To Explore Risks for Schizophrenia, and the Multiplex Multigenerational Family Study of Schizophrenia. The replication set contained 247 SZ cases and 250 controls (n = 497) from the Genomic Psychiatry Cohort. MAIN OUTCOMES AND MEASURES: Identification of differentially methylated positions across the genome in SZ cases compared with controls. RESULTS: Of the 689 case participants in the discovery set, 477 (69%) were men and 258 (37%) were non-African American; of the 645 controls, 273 (42%) were men and 419 (65%) were non-African American. In our replication set, cases/controls were 76% male and 100% non-African American. We identified SZ-associated methylation differences at 923 CpGs in the discovery set (false discovery rate, <0.2). Of these, 625 showed changes in the same direction including 172 with P < .05 in the replication set. Some replicated differentially methylated positions are located in a top-ranked SZ region from genome-wide association study analyses. CONCLUSIONS AND RELEVANCE: This analysis identified 172 replicated new associations with SZ after careful correction for cell type heterogeneity and other potential confounders. The overlap with previous genome-wide association study data can provide potential insights into the functional relevance of genetic signals for SZ.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica , Transtornos Psicóticos/genética , Esquizofrenia/genética , Adulto , Negro ou Afro-Americano/genética , Ilhas de CpG/genética , Feminino , Loci Gênicos/genética , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Fenótipo , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/etnologia , Esquizofrenia/diagnóstico , Esquizofrenia/etnologia , Fatores Sexuais
11.
Genes (Basel) ; 5(3): 804-20, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25216122

RESUMO

Branching epithelial morphogenesis is closely linked to epithelial-to-mesenchymal transition (EMT), a process important in normal development and cancer progression. The miR-200 family regulates epithelial morphogenesis and EMT through a negative feedback loop with the ZEB1 and ZEB2 transcription factors. miR-200 inhibits expression of ZEB1/2 mRNA, which in turn can down-regulate the miR-200 family that further results in down-regulation of E-cadherin and induction of a mesenchymal phenotype. Recent studies show that the expression of miR-200 genes is high during late pregnancy and lactation, thereby indicating that these miRs are important for breast epithelial morphogenesis and differentiation. miR-200 genes have been studied intensively in relation to breast cancer progression and metastasis, where it has been shown that miR-200 members are down-regulated in basal-like breast cancer where the EMT phenotype is prominent. There is growing evidence that the miR-200 family is up-regulated in distal breast metastasis indicating that these miRs are important for colonization of metastatic breast cancer cells through induction of mesenchymal to epithelial transition. The dual role of miR-200 in primary and metastatic breast cancer is of interest for future therapeutic interventions, making it important to understand its role and interacting partners in more detail.

12.
Nat Genet ; 43(8): 768-75, 2011 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-21706001

RESUMO

Tumor heterogeneity is a major barrier to effective cancer diagnosis and treatment. We recently identified cancer-specific differentially DNA-methylated regions (cDMRs) in colon cancer, which also distinguish normal tissue types from each other, suggesting that these cDMRs might be generalized across cancer types. Here we show stochastic methylation variation of the same cDMRs, distinguishing cancer from normal tissue, in colon, lung, breast, thyroid and Wilms' tumors, with intermediate variation in adenomas. Whole-genome bisulfite sequencing shows these variable cDMRs are related to loss of sharply delimited methylation boundaries at CpG islands. Furthermore, we find hypomethylation of discrete blocks encompassing half the genome, with extreme gene expression variability. Genes associated with the cDMRs and large blocks are involved in mitosis and matrix remodeling, respectively. We suggest a model for cancer involving loss of epigenetic stability of well-defined genomic domains that underlies increased methylation variability in cancer that may contribute to tumor heterogeneity.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Epigenômica , Regulação Neoplásica da Expressão Gênica , Variação Genética/genética , Neoplasias/classificação , Neoplasias/genética , Biomarcadores Tumorais/genética , DNA de Neoplasias/genética , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Sulfitos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa