Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pineal Res ; 60(2): 167-77, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26607298

RESUMO

Leiomyosarcoma (LMS) represents a highly malignant, rare soft tissue sarcoma with high rates of morbidity and mortality. Previously, we demonstrated that tissue-isolated human LMS xenografts perfused in situ are highly sensitive to the direct anticancer effects of physiological nocturnal blood levels of melatonin which inhibited tumour cell proliferative activity, linoleic acid (LA) uptake and metabolism to 13-hydroxyoctadecadienoic acid (13-HODE). Here, we show the effects of low pharmacological blood concentrations of melatonin following oral ingestion of a melatonin supplement by healthy adult human female subjects on tumour proliferative activity, aerobic glycolysis (Warburg effect) and LA metabolic signalling in tissue-isolated LMS xenografts perfused in situ with this blood. Melatonin markedly suppressed aerobic glycolysis and induced a complete inhibition of tumour LA uptake, 13-HODE release, as well as significant reductions in tumour cAMP levels, DNA content and [(3) H]-thymidine incorporation into DNA. Furthermore, melatonin completely suppressed the phospho-activation of ERK 1/2, AKT, GSK3ß and NF-kB (p65). The addition of S20928, a nonselective melatonin antagonist, reversed these melatonin inhibitory effects. Moreover, in in vitro cell culture studies, physiological concentrations of melatonin repressed cell proliferation and cell invasion. These results demonstrate that nocturnal melatonin directly inhibited tumour growth and invasion of human LMS via suppression of the Warburg effect, LA uptake and other related signalling mechanisms. An understanding of these novel signalling pathway(s) and their association with aerobic glycolysis and LA metabolism in human LMS may lead to new circadian-based therapies for the prevention and treatment of LMS and potentially other mesenchymally derived solid tumours.


Assuntos
Glicólise/efeitos dos fármacos , Leiomiossarcoma/tratamento farmacológico , Melatonina/metabolismo , Animais , Sobrevivência Celular , Feminino , Humanos , Leiomiossarcoma/metabolismo , Leiomiossarcoma/patologia , Metástase Neoplásica , Ratos , Ratos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Endocr Relat Cancer ; 22(3): R183-204, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25876649

RESUMO

The present review discusses recent work on melatonin-mediated circadian regulation, the metabolic and molecular signaling mechanisms that are involved in human breast cancer growth, and the associated consequences of circadian disruption by exposure to light at night (LEN). The anti-cancer actions of the circadian melatonin signal in human breast cancer cell lines and xenografts heavily involve MT1 receptor-mediated mechanisms. In estrogen receptor alpha (ERα)-positive human breast cancer, melatonin suppresses ERα mRNA expression and ERα transcriptional activity via the MT1 receptor. Melatonin also regulates the transactivation of other members of the nuclear receptor superfamily, estrogen-metabolizing enzymes, and the expression of core clock and clock-related genes. Furthermore, melatonin also suppresses tumor aerobic metabolism (the Warburg effect) and, subsequently, cell-signaling pathways critical to cell proliferation, cell survival, metastasis, and drug resistance. Melatonin demonstrates both cytostatic and cytotoxic activity in breast cancer cells that appears to be cell type-specific. Melatonin also possesses anti-invasive/anti-metastatic actions that involve multiple pathways, including inhibition of p38 MAPK and repression of epithelial-mesenchymal transition (EMT). Studies have demonstrated that melatonin promotes genomic stability by inhibiting the expression of LINE-1 retrotransposons. Finally, research in animal and human models has indicated that LEN-induced disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer and drives breast tumors to endocrine and chemotherapeutic resistance. These data provide the strongest understanding and support of the mechanisms that underpin the epidemiologic demonstration of elevated breast cancer risk in night-shift workers and other individuals who are increasingly exposed to LEN.


Assuntos
Neoplasias da Mama/metabolismo , Ritmo Circadiano/fisiologia , Melatonina/metabolismo , Animais , Feminino , Humanos , Transdução de Sinais
3.
Cancer Res ; 74(15): 4099-110, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25062775

RESUMO

Resistance to endocrine therapy is a major impediment to successful treatment of breast cancer. Preclinical and clinical evidence links resistance to antiestrogen drugs in breast cancer cells with the overexpression and/or activation of various pro-oncogenic tyrosine kinases. Disruption of circadian rhythms by night shift work or disturbed sleep-wake cycles may lead to an increased risk of breast cancer and other diseases. Moreover, light exposure at night (LEN) suppresses the nocturnal production of melatonin that inhibits breast cancer growth. In this study, we used a rat model of estrogen receptor (ERα(+)) MCF-7 tumor xenografts to demonstrate how altering light/dark cycles with dim LEN (dLEN) speed the development of breast tumors, increasing their metabolism and growth and conferring an intrinsic resistance to tamoxifen therapy. These characteristics were not observed in animals in which the circadian melatonin rhythm was not disrupted, or in animals subjected to dLEN if they received nocturnal melatonin replacement. Strikingly, our results also showed that melatonin acted both as a tumor metabolic inhibitor and a circadian-regulated kinase inhibitor to reestablish the sensitivity of breast tumors to tamoxifen and tumor regression. Together, our findings show how dLEN-mediated disturbances in nocturnal melatonin production can render tumors insensitive to tamoxifen.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/sangue , Neoplasias da Mama/tratamento farmacológico , Ritmo Circadiano/fisiologia , Luz , Melatonina/sangue , Tamoxifeno/farmacologia , Animais , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Células MCF-7 , Camundongos Nus , Distribuição Aleatória , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa