Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Nucleic Acids Res ; 52(10): 6079-6091, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38661215

RESUMO

CRISPR-Cas systems can be utilized as programmable-spectrum antimicrobials to combat bacterial infections. However, how CRISPR nucleases perform as antimicrobials across target sites and strains remains poorly explored. Here, we address this knowledge gap by systematically interrogating the use of CRISPR antimicrobials using multidrug-resistant and hypervirulent strains of Klebsiella pneumoniae as models. Comparing different Cas nucleases, DNA-targeting nucleases outperformed RNA-targeting nucleases based on the tested targets. Focusing on AsCas12a that exhibited robust targeting across different strains, we found that the elucidated modes of escape varied widely, restraining opportunities to enhance killing. We also encountered individual guide RNAs yielding different extents of clearance across strains, which were linked to an interplay between improper gRNA folding and strain-specific DNA repair and survival. To explore features that could improve targeting across strains, we performed a genome-wide screen in different K. pneumoniae strains that yielded guide design rules and trained an algorithm for predicting guide efficiency. Finally, we showed that Cas12a antimicrobials can be exploited to eliminate K. pneumoniae when encoded in phagemids delivered by T7-like phages. Altogether, our results highlight the importance of evaluating antimicrobial activity of CRISPR antimicrobials across relevant strains and define critical parameters for efficient CRISPR-based targeting.


Assuntos
Sistemas CRISPR-Cas , Klebsiella pneumoniae , RNA Guia de Sistemas CRISPR-Cas , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genoma Bacteriano/genética , Edição de Genes/métodos , Humanos
2.
Genome Res ; 32(5): 1004-1014, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35277433

RESUMO

The Klebsiella pneumoniae species complex (KpSC) is a set of seven Klebsiella taxa that are found in a variety of niches and are an important cause of opportunistic health care-associated infections in humans. Because of increasing rates of multi-drug resistance within the KpSC, there is a growing interest in better understanding the biology and metabolism of these organisms to inform novel control strategies. We collated 37 sequenced KpSC isolates isolated from a variety of niches, representing all seven taxa. We generated strain-specific genome-scale metabolic models (GEMs) for all 37 isolates and simulated growth phenotypes on 511 distinct carbon, nitrogen, sulfur, and phosphorus substrates. Models were curated and their accuracy was assessed using matched phenotypic growth data for 94 substrates (median accuracy of 96%). We explored species-specific growth capabilities and examined the impact of all possible single gene deletions using growth simulations in 145 core carbon substrates. These analyses revealed multiple strain-specific differences, within and between species, and highlight the importance of selecting a diverse range of strains when exploring KpSC metabolism. This diverse set of highly accurate GEMs could be used to inform novel drug design, enhance genomic analyses, and identify novel virulence and resistance determinants. We envisage that these 37 curated strain-specific GEMs, covering all seven taxa of the KpSC, provide a valuable resource to the Klebsiella research community.


Assuntos
Infecções por Klebsiella , Klebsiella , Carbono , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Humanos , Klebsiella/genética , Infecções por Klebsiella/genética , Klebsiella pneumoniae/genética , Virulência/genética
3.
J Antimicrob Chemother ; 79(5): 968-976, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38497937

RESUMO

BACKGROUND: Evidence-based clinical susceptibility breakpoints have been lacking for antimicrobial agents used for diphtheria. OBJECTIVES: We aimed to evaluate broth microdilution and disc diffusion methods and create a dataset of MIC values and inhibition zone diameters (ZDs) from which breakpoints could be determined. METHODS: We included 400 recent clinical isolates equally distributed by species (Corynebacterium diphtheriae and Corynebacterium ulcerans) and by national surveillance programmes (France and Germany). Non-duplicate toxigenic and non-toxigenic isolates were chosen to enable the inclusion of a diversity of susceptibility levels for the 13 agents tested. Broth microdilution and disc diffusion, using EUCAST methodology for fastidious organisms, were used. RESULTS: The distributions of MIC and ZD values were largely in agreement among methods and countries. Breakpoints to allow categorization of WT isolates as susceptible, i.e. susceptible (S) or susceptible, increased exposure (I) were determined for 12 agents. The data supported a breakpoint for benzylpenicillin and amoxicillin of resistant (R) > 1 mg/L since WT isolates were inhibited by 1 mg/L or less. WT isolates were categorized as I (S ≤ 0.001 mg/L) for benzylpenicillin, emphasizing the need for increased exposure, and S (S ≤ 1 mg/L) for amoxicillin. Erythromycin breakpoints were set at S ≤ 0.06 mg/L and R > 0.06 mg/L. The corresponding ZD breakpoints were determined for all agents except amoxicillin, for which categorization was based on benzylpenicillin results. CONCLUSIONS: This work provided a large set of antimicrobial susceptibility data for C. diphtheriae and C. ulcerans, using a harmonized methodology. The dataset allowed EUCAST and experts in the diphtheria field to develop evidence-based breakpoints in January 2023.


Assuntos
Antibacterianos , Corynebacterium diphtheriae , Corynebacterium , Testes de Sensibilidade Microbiana , Testes de Sensibilidade Microbiana/métodos , Humanos , Corynebacterium/efeitos dos fármacos , Corynebacterium/isolamento & purificação , Antibacterianos/farmacologia , Corynebacterium diphtheriae/efeitos dos fármacos , Corynebacterium diphtheriae/isolamento & purificação , Corynebacterium diphtheriae/genética , Alemanha , Infecções por Corynebacterium/microbiologia , Difteria/microbiologia , França
4.
Artigo em Inglês | MEDLINE | ID: mdl-38869685

RESUMO

We report a case of Klebsiella pneumoniae bacteraemia in an 80-year-old man in France with no history of travel to Asia, complicated by endogenous endophthalmitis, multiple cerebral microbleeds and hepatic microabscesses, associated with a Bentall endocarditis. Hypervirulence pathotype was suggested based on clinical picture, bacterial isolate genomic sequence and hypermucoidy. Interestingly, the isolate had the non-K1/K2-capsular serotype locus KL113-like, carried a KpVP-1-like virulence plasmid, and belonged to the emerging sublineage SL660 (comprising the sequence type ST660).

5.
Emerg Infect Dis ; 29(8): 1630-1633, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486209

RESUMO

Clinical, epidemiologic, and microbiologic analyses revealed emergence of 26 cases of Corynebacterium diphtheriae species complex infections on Réunion Island, France, during 2015-2020. Isolates were genetically diverse, indicating circulation and local transmission of several diphtheria sublineages. Clinicians should remain aware of the risk for diphtheria and improve diagnostic methods and patient management.


Assuntos
Infecções por Corynebacterium , Corynebacterium diphtheriae , Difteria , Humanos , Difteria/microbiologia , Toxina Diftérica , Infecções por Corynebacterium/microbiologia , Reunião/epidemiologia , Corynebacterium , França/epidemiologia
6.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35700230

RESUMO

Sublineages (SLs) within microbial species can differ widely in their ecology and pathogenicity, and their precise definition is important in basic research and for industrial or public health applications. Widely accepted strategies to define SLs are currently missing, which confuses communication in population biology and epidemiological surveillance. Here, we propose a broadly applicable genomic classification and nomenclature approach for bacterial strains, using the prominent public health threat Klebsiella pneumoniae as a model. Based on a 629-gene core genome multilocus sequence typing (cgMLST) scheme, we devised a dual barcoding system that combines multilevel single linkage (MLSL) clustering and life identification numbers (LINs). Phylogenetic and clustering analyses of >7,000 genome sequences captured population structure discontinuities, which were used to guide the definition of 10 infraspecific genetic dissimilarity thresholds. The widely used 7-gene multilocus sequence typing (MLST) nomenclature was mapped onto MLSL SLs (threshold: 190 allelic mismatches) and clonal group (threshold: 43) identifiers for backwards nomenclature compatibility. The taxonomy is publicly accessible through a community-curated platform (https://bigsdb.pasteur.fr/klebsiella), which also enables external users' genomic sequences identification. The proposed strain taxonomy combines two phylogenetically informative barcode systems that provide full stability (LIN codes) and nomenclatural continuity with previous nomenclature (MLSL). This species-specific dual barcoding strategy for the genomic taxonomy of microbial strains is broadly applicable and should contribute to unify global and cross-sector collaborative knowledge on the emergence and microevolution of bacterial pathogens.


Assuntos
Genoma Bacteriano , Klebsiella pneumoniae , Genômica , Genótipo , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus , Filogenia
7.
Front Ecol Environ ; 21(9): 428-434, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38464945

RESUMO

Antibiotic resistance is one of the greatest public health challenges of our time. International efforts to curb resistance have largely focused on drug development and limiting unnecessary antibiotic use. However, in areas where water, sanitation, and hygiene infrastructure is lacking, we propose that bacterial flow between humans and animals can exacerbate the emergence and spread of resistant pathogens. Here, we describe the consequences of poor environmental controls by comparing mobile resistance elements among Escherichia coli recovered from humans and meat in Cambodia, a middle-income country with substantial human-animal connectivity and unregulated antibiotic use. We identified identical mobile resistance elements and a conserved transposon region that were widely dispersed in both humans and animals, a phenomenon rarely observed in high-income settings. Our findings indicate that plugging leaks at human-animal interfaces should be a critical part of addressing antibiotic resistance in low- and especially middle-income countries.

8.
Euro Surveill ; 28(46)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37971662

RESUMO

We describe 10 unlinked cases of Corynebacterium diphtheriae infection (nine cutaneous, one respiratory) in France in 2023 in persons travelling from Guinea, Mali, Senegal, Niger or Nigeria and Central African Republic. Four isolates were toxigenic. Seven genomically unrelated isolates were multidrug-resistant, including a toxigenic respiratory isolate with high-level resistance to macrolides and beta-lactams. The high rates of resistance, including against first-line agents, call for further microbiological investigations to guide clinical management and public health response in ongoing West African outbreaks.


Assuntos
Corynebacterium diphtheriae , Difteria , Humanos , Corynebacterium diphtheriae/genética , Difteria/diagnóstico , Difteria/tratamento farmacológico , Difteria/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , França/epidemiologia , Mali
9.
BMC Genomics ; 23(1): 235, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35346021

RESUMO

BACKGROUND: Whole genome sequencing analyzed by core genome multi-locus sequence typing (cgMLST) is widely used in surveillance of the pathogenic bacteria Listeria monocytogenes. Given the heterogeneity of available bioinformatics tools to define cgMLST alleles, our aim was to identify parameters influencing the precision of cgMLST profiles. METHODS: We used three L. monocytogenes reference genomes from different phylogenetic lineages and assessed the impact of in vitro (i.e. tested genomes, successive platings, replicates of DNA extraction and sequencing) and in silico parameters (i.e. targeted depth of coverage, depth of coverage, breadth of coverage, assembly metrics, cgMLST workflows, cgMLST completeness) on cgMLST precision made of 1748 core loci. Six cgMLST workflows were tested, comprising assembly-based (BIGSdb, INNUENDO, GENPAT, SeqSphere and BioNumerics) and assembly-free (i.e. kmer-based MentaLiST) allele callers. Principal component analyses and generalized linear models were used to identify the most impactful parameters on cgMLST precision. RESULTS: The isolate's genetic background, cgMLST workflows, cgMLST completeness, as well as depth and breadth of coverage were the parameters that impacted most on cgMLST precision (i.e. identical alleles against reference circular genomes). All workflows performed well at ≥40X of depth of coverage, with high loci detection (> 99.54% for all, except for BioNumerics with 97.78%) and showed consistent cluster definitions using the reference cut-off of ≤7 allele differences. CONCLUSIONS: This highlights that bioinformatics workflows dedicated to cgMLST allele calling are largely robust when paired-end reads are of high quality and when the sequencing depth is ≥40X.


Assuntos
Listeria monocytogenes , Genoma Bacteriano , Listeria monocytogenes/genética , Tipagem de Sequências Multilocus , Filogenia , Sequenciamento Completo do Genoma
10.
Environ Microbiol ; 24(9): 4425-4436, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35590448

RESUMO

The grey-headed flying fox (Pteropus poliocephalus) is an endemic Australian fruit bat, known to carry zoonotic pathogens. We recently showed they harbour bacterial pathogen Klebsiella pneumoniae and closely related species in the K. pneumoniae species complex (KpSC); however, the dynamics of KpSC transmission and gene flow within flying fox colonies are poorly understood. High-resolution genome comparisons of 39 KpSC isolates from grey-headed flying foxes identified five putative strain transmission clusters (four intra- and one inter-colony). The instance of inter-colony strain transmission of K. africana was found between two flying fox populations within flying distance, indicating either direct or indirect transmission through a common food/water source. All 11 plasmids identified within the KpSC isolates showed 73% coverage (mean) and ≥95% identity to human-associated KpSC plasmids, indicating gene flow between human clinical and grey-headed flying fox isolates. Along with strain transmission, inter-species horizontal plasmid transmission between K. pneumoniae and Klebsiella africana was also identified within a flying fox colony. Finally, genome-scale metabolic models were generated to predict and compare substrate usage to previously published KpSC models, from human and environmental sources. These models indicated no distinction on the basis of metabolic capabilities. Instead, metabolic capabilities were consistent with population structure and ST/lineage.


Assuntos
Quirópteros , Animais , Austrália/epidemiologia , Quirópteros/microbiologia , Humanos , Klebsiella , Plasmídeos/genética , Água
11.
J Antimicrob Chemother ; 77(5): 1263-1271, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35224624

RESUMO

BACKGROUND: WHO considers ESBL- and carbapenemase-producing Klebsiella pneumoniae a major global concern. In animals, ESBL- and carbapenemase-producing K. pneumoniae of human-related ST11, ST15 and ST307 have been reported, but not in the context of large WGS-based One Health investigations. OBJECTIVES: To perform comparative phylogenomics on a large collection of multidrug-resistant (MDR) K. pneumoniae recovered from diseased companion animals and humans. METHODS: MDR K. pneumoniae (n = 105) recovered from companion animals in France during 2010-18 were phenotypically characterized. All isolates were whole-genome sequenced using the NovaSeq technology and phylogenomic analysis across animal and human K. pneumoniae was performed using appropriate pipelines. RESULTS: bla CTX-M-15, blaDHA-1 and blaOXA-48 were strongly associated with IncFIIk, IncR and IncL plasmids, respectively. When compared with human K. pneumoniae genomes, four groups of closely related French human and animal isolates belonging to ST11, ST15 and ST307 were detected, suggesting the circulation of clones between the human and animal sectors at country level. A large cluster of 31 ST11-KL105 animal isolates from France and Switzerland suggested it corresponds to a sub-lineage that is particularly well-adapted to the animal host. CONCLUSIONS: This study demonstrates the spread of blaCTX-M-15-carrying ST15 and ST307, and blaDHA-1-carrying ST11 K. pneumoniae clones in animal populations. ST11 was the main vector of blaOXA-48/IncL, despite the absence of carbapenem use in French animals. Comparative phylogenomics suggests cross-transmission of K. pneumoniae sub-lineages more prone than others to colonize/infect the animal host. Our data also evidenced the emergence of convergent hypervirulent and MDR K. pneumoniae in animals.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Animais , Proteínas de Bactérias , Humanos , Infecções por Klebsiella/veterinária , Klebsiella pneumoniae/genética , Animais de Estimação , Filogenia , beta-Lactamases/genética
13.
Euro Surveill ; 27(17)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35485270

RESUMO

IntroductionIn France, three complementary surveillance networks involving hospitals and paediatrician practices currently allow pertussis surveillance among infants (<1 year old) and children (1-12 years old). Data on incidences among adolescents (13-17 years old) and adults (≥ 18 years) are scarce. In 2017, a sentinel surveillance system called Sentinelles network, was implemented among general practitioners (GPs).AimThe purpose of Sentinelles network is to assess pertussis incidence, monitor the cases' age distribution and evaluate the impact of the country's vaccination policy. We present the results from the first 4 years of this surveillance.MethodsGPs of the French Sentinelles network reported weekly numbers of epidemiologically or laboratory-confirmed cases and their characteristics.ResultsA total of 132 cases were reported over 2017-2020. Estimated national incidence rates per 100,000 inhabitants were 17 (95% confidence interval (CI): 12-22) in 2017, 10 (95% CI: 6-14) in 2018, 15 (95% CI: 10-20) in 2019 and three (95% CI: 1-5) in 2020. The incidence rate was significantly lower in 2020 than in 2017-2019. Women were significantly more affected than men (83/132; 63% of women, p = 0.004); 66% (87/132) of cases were aged 15 years or over (median age: 31.5 years; range: 2 months-87 years). Among 37 vaccinated cases with data, 33 had received the recommended number of doses for their age.ConclusionsThese results concur with incidences reported in other European countries, and with studies showing that the incidences of several respiratory diseases decreased in 2020 during the COVID-19 pandemic. The results also suggest a shift of morbidity towards older age groups, and a rapid waning of immunity after vaccination, justifying to continue this surveillance.


Assuntos
COVID-19 , Clínicos Gerais , Coqueluche , Adolescente , Adulto , Idoso , COVID-19/epidemiologia , Criança , Pré-Escolar , Feminino , França/epidemiologia , Humanos , Lactente , Masculino , Pandemias , Coqueluche/diagnóstico , Coqueluche/epidemiologia , Coqueluche/prevenção & controle
14.
Euro Surveill ; 27(25)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35748301

RESUMO

BackgroundInterventions to mitigate the COVID-19 pandemic may impact other respiratory diseases.AimsWe aimed to study the course of pertussis in France over an 8-year period including the beginning of the COVID-19 pandemic and its association with COVID-19 mitigation strategies, using multiple nationwide data sources and regression models.MethodsWe analysed the number of French pertussis cases between 2013 and 2020, using PCR test results from nationwide outpatient laboratories (Source 1) and a network of the paediatric wards from 41 hospitals (Source 2). We also used reports of a national primary care paediatric network (Source 3). We conducted a quasi-experimental interrupted time series analysis, relying on negative binomial regression models. The models accounted for seasonality, long-term cycles and secular trend, and included a binary variable for the first national lockdown (start 16 March 2020).ResultsWe identified 19,039 pertussis cases from these data sources. Pertussis cases decreased significantly following the implementation of mitigation measures, with adjusted incidence rate ratios of 0.10 (95% CI: 0.04-0.26) and 0.22 (95% CI: 0.07-0.66) for Source 1 and Source 2, respectively. The association was confirmed in Source 3 with a median of, respectively, one (IQR: 0-2) and 0 cases (IQR: 0-0) per month before and after lockdown (p = 0.0048).ConclusionsThe strong reduction in outpatient and hospitalised pertussis cases suggests an impact of COVID-19 mitigation measures on pertussis epidemiology. Pertussis vaccination recommendations should be followed carefully, and disease monitoring should be continued to detect any resurgence after relaxation of mitigation measures.


Assuntos
COVID-19 , Coqueluche , COVID-19/epidemiologia , Criança , Controle de Doenças Transmissíveis , França/epidemiologia , Humanos , Armazenamento e Recuperação da Informação , Pandemias , Coqueluche/epidemiologia , Coqueluche/prevenção & controle
15.
Clin Infect Dis ; 73(Suppl_4): S325-S335, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850838

RESUMO

BACKGROUND: Klebsiella species, including the notable pathogen K. pneumoniae, are increasingly associated with antimicrobial resistance (AMR). Genome-based surveillance can inform interventions aimed at controlling AMR. However, its widespread implementation requires tools to streamline bioinformatic analyses and public health reporting. METHODS: We developed the web application Pathogenwatch, which implements analytics tailored to Klebsiella species for integration and visualization of genomic and epidemiological data. We populated Pathogenwatch with 16 537 public Klebsiella genomes to enable contextualization of user genomes. We demonstrated its features with 1636 genomes from 4 low- and middle-income countries (LMICs) participating in the NIHR Global Health Research Unit (GHRU) on AMR. RESULTS: Using Pathogenwatch, we found that GHRU genomes were dominated by a small number of epidemic drug-resistant clones of K. pneumoniae. However, differences in their distribution were observed (eg, ST258/512 dominated in Colombia, ST231 in India, ST307 in Nigeria, ST147 in the Philippines). Phylogenetic analyses including public genomes for contextualization enabled retrospective monitoring of their spread. In particular, we identified hospital outbreaks, detected introductions from abroad, and uncovered clonal expansions associated with resistance and virulence genes. Assessment of loci encoding O-antigens and capsule in K. pneumoniae, which represent possible vaccine candidates, showed that 3 O-types (O1-O3) represented 88.9% of all genomes, whereas capsule types were much more diverse. CONCLUSIONS: Pathogenwatch provides a free, accessible platform for real-time analysis of Klebsiella genomes to aid surveillance at local, national, and global levels. We have improved representation of genomes from GHRU participant countries, further facilitating ongoing surveillance.


Assuntos
Infecções por Klebsiella , Klebsiella , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Genômica , Humanos , Klebsiella/genética , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae , Filogenia , Estudos Retrospectivos , beta-Lactamases/genética
16.
J Clin Microbiol ; 59(12): e0158121, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34524891

RESUMO

Corynebacterium diphtheriae is highly transmissible and can cause large diphtheria outbreaks where vaccination coverage is insufficient. Sporadic cases or small clusters are observed in high-vaccination settings. The phylogeography and short timescale evolution of C. diphtheriae are not well understood, in part due to a lack of harmonized analytical approaches of genomic surveillance and strain tracking. We combined 1,305 genes with highly reproducible allele calls into a core genome multilocus sequence typing (cgMLST) scheme. We analyzed cgMLST gene diversity among 602 isolates from sporadic clinical cases, small clusters, or large outbreaks. We defined sublineages based on the phylogenetic structure within C. diphtheriae and strains based on the highest number of cgMLST mismatches within documented outbreaks. We performed time-scaled phylogenetic analyses of major sublineages. The cgMLST scheme showed high allele call rate in C. diphtheriae and the closely related species C. belfantii and C. rouxii. We demonstrate its utility to delineate epidemiological case clusters and outbreaks using a 25 mismatches threshold and reveal a number of cryptic transmission chains, most of which are geographically restricted to one or a few adjacent countries. Subcultures of the vaccine strain PW8 differed by up to 20 cgMLST mismatches. Phylogenetic analyses revealed a short-timescale evolutionary gain or loss of the diphtheria toxin and biovar-associated genes. We devised a genomic taxonomy of strains and deeper sublineages (defined using a 500-cgMLST-mismatch threshold), currently comprising 151 sublineages, only a few of which are geographically widespread based on current sampling. The cgMLST genotyping tool and nomenclature was made publicly accessible (https://bigsdb.pasteur.fr/diphtheria). Standardized genome-scale strain genotyping will help tracing transmission and geographic spread of C. diphtheriae. The unified genomic taxonomy of C. diphtheriae strains provides a common language for studies of ecology, evolution, and virulence heterogeneity among C. diphtheriae sublineages.


Assuntos
Corynebacterium diphtheriae , Difteria , Corynebacterium diphtheriae/genética , Difteria/epidemiologia , Difteria/microbiologia , Genoma Bacteriano , Genômica , Humanos , Tipagem de Sequências Multilocus , Filogenia
17.
J Clin Microbiol ; 59(3)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33328176

RESUMO

Staphylococcus epidermidis is a pathogen emerging worldwide as a leading cause of health care-associated infections. A standardized high-resolution typing method to document transmission and dissemination of multidrug-resistant S. epidermidis strains is needed. Our aim was to provide a core genome multilocus sequence typing (cgMLST) scheme for S. epidermidis to improve the international surveillance of S. epidermidis We defined a cgMLST scheme based on 699 core genes and used it to investigate the population structure of the species and the genetic relatedness of isolates recovered from infants hospitalized in several wards of a French hospital. Our results show the long-lasting endemic persistence of S. epidermidis clones within and across wards of hospitals and demonstrate the ability of our cgMLST approach to identify and track these clones. We made the scheme publicly available through the Institut Pasteur BIGSdb server (http://bigsdb.pasteur.fr/epidermidis/). This tool should enable international harmonization of the epidemiological surveillance of multidrug-resistant S. epidermidis clones. By comparing gene distribution among infection and commensal isolates, we also confirmed the association of the mecA locus with infection isolates and of the fdh gene with commensal isolates. (This study has been registered at ClinicalTrials.gov under registration no. NCT03374371.).


Assuntos
Infecções Estafilocócicas , Staphylococcus epidermidis , Células Clonais , Genoma Bacteriano/genética , Hospitais , Humanos , Tipagem de Sequências Multilocus , Infecções Estafilocócicas/epidemiologia , Staphylococcus epidermidis/genética
18.
Euro Surveill ; 26(37)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34533118

RESUMO

BackgroundBordetella pertussis is the main agent of whooping cough. Vaccination with acellular pertussis vaccines has been largely implemented in high-income countries. These vaccines contain 1 to 5 antigens: pertussis toxin (PT), filamentous haemagglutinin (FHA), pertactin (PRN) and/or fimbrial proteins (FIM2 and FIM3). Monitoring the emergence of B. pertussis isolates that might partially escape vaccine-induced immunity is an essential component of public health strategies to control whooping cough.AimWe aimed to investigate temporal trends of fimbriae serotypes and vaccine antigen-expression in B. pertussis over a 23-year period in France (1996-2018).MethodsIsolates (n = 2,280) were collected through hospital surveillance, capturing one third of hospitalised paediatric pertussis cases. We assayed PT, FHA and PRN production by Western blot (n = 1,428) and fimbriae production by serotyping (n = 1,058). Molecular events underlying antigen deficiency were investigated by genomic sequencing.ResultsThe proportion of PRN-deficient B. pertussis isolates has increased steadily from 0% (0/38) in 2003 to 48.4% (31/64) in 2018 (chi-squared test for trend, p < 0.0001), whereas only 5 PT-, 5 FHA- and 9 FIM-deficient isolates were found. Impairment of PRN production was predominantly due to IS481 insertion within the prn gene or a 22 kb genomic inversion involving the prn promoter sequence, indicative of convergent evolution. FIM2-expressing isolates have emerged since 2011 at the expense of FIM3.ConclusionsB. pertussis is evolving through the rapid increase of PRN-deficient isolates and a recent shift from FIM3 to FIM2 expression. Excluding PRN, the loss of vaccine antigen expression by circulating B. pertussis isolates is epidemiologically insignificant.


Assuntos
Bordetella pertussis , Coqueluche , Proteínas da Membrana Bacteriana Externa/genética , Bordetella pertussis/genética , Criança , França/epidemiologia , Humanos , Toxina Pertussis , Vacina contra Coqueluche , Fatores de Virulência de Bordetella/genética , Coqueluche/epidemiologia , Coqueluche/prevenção & controle
19.
J Trop Pediatr ; 67(1)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33094342

RESUMO

Diphtheria is an infection that has been unreported for more than two decades in Mahajanga. A child, aged 4, presented with a pseudomembranous pharyngitis was associated with a dysphagia. He was from a rural municipality of Ambato Boeny at Mahajanga province and was admitted to the Pediatric Unit of the University Hospital Center. The child was not immunized against diphtheria. A throat swab was performed and cultured, from which Corynebacterium diphtheriae was identified. The strain, of biovar Mitis, was confirmed as diphtheria toxin (DT)-gene positive and produced DT (Elek test). Unfortunately, the child developed cardiac and neurological complications and died of respiratory and heart failure.


Assuntos
Corynebacterium diphtheriae , Difteria , Faringite , Criança , Pré-Escolar , Corynebacterium diphtheriae/genética , Difteria/diagnóstico , Família , Humanos , Madagáscar , Masculino
20.
J Antimicrob Chemother ; 75(7): 1736-1746, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32303060

RESUMO

OBJECTIVES: To define characteristics of Klebsiella pneumoniae isolated from carriage and infections in mothers and their neonates belonging to a paediatric cohort in Madagascar. METHODS: A total of 2000 mothers and their 2001 neonates were included. For each mother, vaginal and stool samples were collected at the birth. Additionally, upon suspicion of infection, samples were collected from suspected infected body sites in 121 neonates. Genomic sequences of all isolated K. pneumoniae were used for phylogenetic analyses and to investigate the genomic content of antimicrobial resistance genes, virulence genes and plasmid replicon types. RESULTS: Five percent (n = 101) of mothers were K. pneumoniae positive. Of 251 collected K. pneumoniae isolates, 102 (40.6%) were from mothers and 149 (59.3%) were from neonates. A total of 49 (19.5%; all from infants except 1) isolates were from infected body sites. MLST identified 108 different STs distributed over the six K. pneumoniae phylogroups Kp1 to Kp6. We found 65 (25.8%) ESBL producers and a total of 101 (40.2%) MDR isolates. The most common ESBL gene was blaCTX-M-15 (in 99.3% of isolates expressing ESBL). One isolate co-harboured blaCTX-M-15 and blaNDM-1 genes. Three isolates from infected body sites belonged to hypervirulent-associated ST23 (n = 1) and ST25 (n = 2). We observed two cases of mother-to-child transmission and sustained K. pneumoniae carriage was identified in 10 neonates, with identical isolates observed longitudinally over the course of 18 to 115 days. CONCLUSIONS: This study revealed substantial genetic diversity and a high rate of antimicrobial resistance among K. pneumoniae isolated from both carriage and infections in Madagascar.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Criança , Feminino , Humanos , Lactente , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Madagáscar/epidemiologia , Relações Mãe-Filho , Tipagem de Sequências Multilocus , Filogenia , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa