Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mov Disord ; 39(1): 76-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062630

RESUMO

BACKGROUND: Impaired movement vigor (bradykinesia) is a cardinal feature of Parkinson's disease (PD) and hypothesized to result from abnormal motivational processes-impaired motivation-vigor coupling. Dopamine replacement therapy (DRT) improves bradykinesia, but the response to DRT is multifaceted, comprising a short-duration response (SDR) and a long-duration response (LDR) only manifesting with chronic treatment. Prior experiments assessing motivation-vigor coupling in PD used chronically treated subjects, obscuring the roles of the SDR and LDR. METHODS: To disambiguate the SDR and LDR, 11 de novo PD subjects (6 male [M]:5 female [F]; mean age, 67) were studied before treatment, after an acute levodopa (l-dopa) dose, and in both the practical "off" (LDR) and "on" (LDR + SDR) states after chronic stable treatment. At each visit, subjects were characterized with a standard battery including the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and an incentivized joystick task to assess motor performance in response to varying rewards. RESULTS: l-Dopa induced a robust SDR and LDR, with further improvement in the combined SDR + LDR state. At baseline, after acute treatment (SDR), and after LDR induction, subjects did not exhibit the normal increase in movement speed with increasing reward. Only in the combined SDR + LDR state was there restoration of motivation-vigor coupling. CONCLUSIONS: Although consistent with prior results in chronically treated PD subjects, the significant improvement in motor performance observed with the SDR and LDR suggests that bradykinesia is not solely secondary to deficient modulation of motivational processes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Levodopa , Doença de Parkinson , Masculino , Humanos , Feminino , Idoso , Levodopa/farmacologia , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Hipocinesia , Motivação , Movimento , Dopamina/farmacologia , Antiparkinsonianos/uso terapêutico , Antiparkinsonianos/farmacologia
2.
Cereb Cortex ; 32(4): 855-869, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34467399

RESUMO

Working memory (WM) supports the persistent representation of transient sensory information. Visual and auditory stimuli place different demands on WM and recruit different brain networks. Separate auditory- and visual-biased WM networks extend into the frontal lobes, but several challenges confront attempts to parcellate human frontal cortex, including fine-grained organization and between-subject variability. Here, we use differential intrinsic functional connectivity from 2 visual-biased and 2 auditory-biased frontal structures to identify additional candidate sensory-biased regions in frontal cortex. We then examine direct contrasts of task functional magnetic resonance imaging during visual versus auditory 2-back WM to validate those candidate regions. Three visual-biased and 5 auditory-biased regions are robustly activated bilaterally in the frontal lobes of individual subjects (N = 14, 7 women). These regions exhibit a sensory preference during passive exposure to task stimuli, and that preference is stronger during WM. Hierarchical clustering analysis of intrinsic connectivity among novel and previously identified bilateral sensory-biased regions confirms that they functionally segregate into visual and auditory networks, even though the networks are anatomically interdigitated. We also observe that the frontotemporal auditory WM network is highly selective and exhibits strong functional connectivity to structures serving non-WM functions, while the frontoparietal visual WM network hierarchically merges into the multiple-demand cognitive system.


Assuntos
Percepção Auditiva , Memória de Curto Prazo , Mapeamento Encefálico/métodos , Feminino , Lobo Frontal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
3.
J Neurosci ; 41(5): 1033-1045, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33214320

RESUMO

fMRI research has revealed that cerebellar lobule VIIb/VIIIa exhibits load-dependent activity that increases with the number of items held in visual working memory (VWM). However, it remains unclear whether these cerebellar responses reflect processes specific to VWM or more general visual attentional mechanisms. To investigate this question, we examined whether cerebellar activity during the delay period of a VWM task is selective for stimuli held in working memory. A sample of male and female human subjects performed a VWM continuous report task in which they were retroactively cued to remember the direction of motion of moving dot stimuli. Cerebellar lobule VIIb/VIIIa delay-period activation accurately decoded the direction of the remembered stimulus, as did frontal and parietal regions of the dorsal attention network. Arguing against a motor explanation, no other cerebellar area exhibited stimulus specificity, including the oculomotor vermis, a key area associated with eye movement control. Finer-scale analysis revealed that the medial portion of lobule VIIb and to a lesser degree the lateral most portion of lobules VIIb and VIIIa, which exhibit robust resting state connectivity with frontal and parietal regions of the dorsal attention network, encoded the identity of the remembered stimulus, while intermediate portions of lobule VIIb/VIIIa did not. These findings of stimulus-specific coding of VWM within lobule VIIb/VIIIa indicate for the first time that the distributed network responsible for the encoding and maintenance of mnemonic representations extends to the cerebellum.SIGNIFICANCE STATEMENT There is considerable debate concerning where in the brain the contents of visual working memory (VWM) are stored. To date, this literature has primarily focused on the role of regions located within cerebral cortex. There is growing evidence for cerebellar involvement in higher-order cognitive functions including working memory. While the cerebellum has been previously shown to be recruited by VWM paradigms, it is unclear whether any portion of cerebellum actively encodes and maintains mnemonic representations. The present study demonstrates that cerebellar lobule VIIb/VIIIa activity patterns are selective for remembered stimuli and that this selectivity persists in the absence of perceptual input. These findings provide novel evidence for the participation of cerebellar structures in the persistent storage of visual information.


Assuntos
Cerebelo/fisiologia , Movimentos Oculares/fisiologia , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo/fisiologia , Estimulação Luminosa/métodos , Percepção Visual/fisiologia , Adulto , Cerebelo/diagnóstico por imagem , Feminino , Humanos , Masculino , Distribuição Aleatória
4.
Neuroimage ; 219: 117029, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32526387

RESUMO

Visual attention and visual working memory tasks recruit a common network of lateral frontal cortical (LFC) and posterior parietal cortical (PPC) regions. Here, we examine finer-scale organization of this frontoparietal network. Three LFC regions recruited by visual cognition tasks, superior precentral sulcus (sPCS), inferior precentral sulcus (iPCS), and mid inferior frontal sulcus (midIFS) exhibit differential patterns of resting-state functional connectivity to PPC. A broad dorsomedial to ventrolateral gradient is observed, with sPCS connectivity dominating in the dorsomedial PPC band, iPCS dominating in the middle band, and midIFS dominating in the ventrolateral band. These connectivity-defined subregions of PPC capture differential task activation between a pair of visual attention and working memory tasks. The relative functional connectivity of sPCS and iPCS also varies along the rostral-caudal axis of the retinotopic regions of PPC. iPCS connectivity is relatively stronger near the IPS0/IPS1 and IPS2/IPS3 borders, especially on the lateral portions of these borders, which each preferentially encode central visual field representations. In contrast, sPCS connectivity is relatively stronger elsewhere in retinotopic IPS regions which preferentially encode peripheral visual field representations. These findings reveal fine-scale gradients in functional connectivity within the frontoparietal visual network that capture a high-degree of specificity in PPC functional organization.


Assuntos
Atenção/fisiologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Cognição/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Estimulação Luminosa
5.
J Neurophysiol ; 122(1): 232-240, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31066602

RESUMO

The cortical dorsal attention network (DAN) is a set of parietal and frontal regions that support a wide variety of attentionally demanding tasks. Whereas attentional deployment reliably drives DAN activity across subjects, there is a large degree of variation in the activation pattern in individual subjects. We hypothesize that a subject's own idiosyncratic pattern of cortical DAN activity can be predicted from that subject's own unique pattern of functional connectivity. By modeling task activation as a function of whole brain connectivity patterns, we are able to define the connectivity fingerprints for the frontal and parietal DAN, and use it to predict a subject's characteristic DAN activation pattern with high accuracy. These predictions outperform the standard group-average benchmark and predict a subject's own activation pattern above and beyond predictions from another subject's connectivity pattern. Thus an individual's distinctive connectivity pattern accounts for substantial variance in DAN functional responses. Last, we show that the set of connections that predict cortical DAN responses, the frontal and parietal DAN connectivity fingerprints, is predominantly composed of other coactive regions, including regions outside of the DAN including occipital and temporal visual cortices. These connectivity fingerprints represent defining computational characteristics of the DAN, delineating which voxels are or are not capable of exerting top-down attentional bias to other regions of the brain. NEW & NOTEWORTHY The dorsal attention network (DAN) is a set of regions in frontoparietal cortex that reliably activate during attentional tasks. We designed computational models that predict the degree of an individual's DAN activation using their resting-state connectivity pattern alone. This uncovered the connectivity fingerprints of the DAN, which define it so well that we can predict how a voxel will respond to an attentional task given only its pattern of connectivity, with outstanding accuracy.


Assuntos
Atenção , Conectoma , Lobo Frontal/fisiologia , Modelos Neurológicos , Lobo Parietal/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
6.
Neuroimage ; 183: 173-185, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30092348

RESUMO

The human cerebral cortex is estimated to comprise 200-300 distinct functional regions per hemisphere. Identification of the precise anatomical location of an individual's unique set of functional regions is a challenge for neuroscience that has broad scientific and clinical utility. Recent studies have demonstrated the existence of four interleaved regions in lateral frontal cortex (LFC) that are part of broader visual attention and auditory attention networks (Michalka et al., 2015; Noyce et al., 2017; Tobyne et al., 2017). Due to a large degree of inter-subject anatomical variability, identification of these regions depends critically on within-subject analyses. Here, we demonstrate that, for both sexes, an individual's unique pattern of resting-state functional connectivity can accurately identify their specific pattern of visual- and auditory-selective working memory and attention task activation in lateral frontal cortex (LFC) using "connectome fingerprinting." Building on prior techniques (Saygin et al., 2011; Osher et al., 2016; Tavor et al., 2016; Smittenaar et al., 2017; Wang et al., 2017; Parker Jones et al., 2017), we demonstrate here that connectome fingerprint predictions are far more accurate than group-average predictions and match the accuracy of within-subject task-based functional localization, while requiring less data. These findings are robust across brain parcellations and are improved with penalized regression methods. Because resting-state data can be easily and rapidly collected, these results have broad implications for both clinical and research investigations of frontal lobe function. Our findings also provide a set of recommendations for future research.


Assuntos
Atenção/fisiologia , Conectoma/métodos , Individualidade , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
7.
J Neurosci ; 36(22): 6083-96, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27251628

RESUMO

UNLABELLED: The "dorsal attention network" or "frontoparietal network" refers to a network of cortical regions that support sustained attention and working memory. Recent work has demonstrated that cortical nodes of the dorsal attention network possess intrinsic functional connections with a region in ventral cerebellum, in the vicinity of lobules VII/VIII. Here, we performed a series of task-based and resting-state fMRI experiments to investigate cerebellar participation in the dorsal attention network in humans. We observed that visual working memory and visual attention tasks robustly recruit cerebellar lobules VIIb and VIIIa, in addition to canonical cortical dorsal attention network regions. Across the cerebellum, resting-state functional connectivity with the cortical dorsal attention network strongly predicted the level of activation produced by attention and working memory tasks. Critically, cerebellar voxels that were most strongly connected with the dorsal attention network selectively exhibited load-dependent activity, a hallmark of the neural structures that support visual working memory. Finally, we examined intrinsic functional connectivity between task-responsive portions of cerebellar lobules VIIb/VIIIa and cortex. Cerebellum-to-cortex functional connectivity strongly predicted the pattern of cortical activation during task performance. Moreover, resting-state connectivity patterns revealed that cerebellar lobules VIIb/VIIIa group with cortical nodes of the dorsal attention network. This evidence leads us to conclude that the conceptualization of the dorsal attention network should be expanded to include cerebellar lobules VIIb/VIIIa. SIGNIFICANCE STATEMENT: The functional participation of cerebellar structures in nonmotor cortical networks remains poorly understood and is highly understudied, despite the fact that the cerebellum possesses many more neurons than the cerebral cortex. Although visual attention paradigms have been reported to activate cerebellum, many researchers have largely dismissed the possibility of a cerebellar contribution to attention in favor of a motor explanation, namely, eye movements. The present study demonstrates that a cerebellar subdivision (mainly lobules VIIb/VIIIa), which exhibits strong intrinsic functional connectivity with the cortical dorsal attention network, also closely mirrors a myriad of cortical dorsal attention network responses to visual attention and working memory tasks. This evidence strongly supports a reconceptualization of the dorsal attention network to include cerebellar lobules VIIb/VIIIa.


Assuntos
Atenção/fisiologia , Mapeamento Encefálico , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Vias Neurais/fisiologia , Adulto , Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Análise por Conglomerados , Movimentos Oculares , Feminino , Lateralidade Funcional , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Estimulação Luminosa , Descanso , Adulto Jovem
8.
Cortex ; 160: 115-133, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36841093

RESUMO

The predicted utility of information stored in working memory (WM) is hypothesized to influence the strategic allocation of WM resources. Prior work has shown that when information is prioritized, it is remembered with greater precision relative to other remembered items. However, these paradigms often complicate interpretation of the effects of predicted utility on item fidelity due to a concurrent memory load. Likewise, no fMRI studies have examined whether the predicted utility of an item modulates fidelity in the neural representation of items during the memory delay without a concurrent load. In the current study, we used fMRI to investigate whether predicted utility influences fidelity of WM representations in the brain. Using a generative model multivoxel analysis approach to estimate the quality of remembered representations across predicted utility conditions, we observed that items with greater predicted utility are maintained in memory with greater fidelity, even when they are the only item being maintained. Further, we found that this pattern follows a parametric relationship where more predicted utility corresponded to greater fidelity. These precision differences could not be accounted for based on a redistribution of resources among already-remembered items. Rather, we interpret these results in terms of a gating mechanism that allows for pre-allocation of resources based on predicted value alone. This evidence supports a theoretical distinction between resource allocation that occurs as a result of load and resource pre-allocation that occurs as a result of predicted utility.


Assuntos
Encéfalo , Memória de Curto Prazo , Humanos , Rememoração Mental , Imageamento por Ressonância Magnética , Atenção
9.
J Exp Psychol Gen ; 152(7): 1825-1839, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37079832

RESUMO

Visual working memory possesses capacity constraints limiting the availability of resources for encoding and maintaining information. Studies have shown that prospective rewards improve performance on visual working memory tasks, but it remains unclear whether rewards increase total resource availability or simply influence the allocation of resources. Participants performed a continuous report visual working memory task with oriented grating stimuli. On each trial, participants were presented with a priority cue, which signaled the item most likely to be probed, and a reward cue, which signaled the magnitude of a performance-contingent reward. We showed that rewards decreased recall error for cued items and increased recall error for noncued items. This tradeoff was due to a change in the probability of successfully encoding a cued versus a noncued item rather than a change in recall precision or the probability of binding errors. Rewards did not modulate performance when priority cues were retroactively presented after the stimulus presentation period, indicating that rewards only affect resource allocation when participants are able to engage proactive control before encoding. Additionally, reward had no effect on visual working memory performance when priority cues were absent and thus unable to guide resource allocation. These findings indicate that rewards influence the flexible allocation of resources during selection and encoding in visual working memory, but do not augment total capacity. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Sinais (Psicologia) , Memória de Curto Prazo , Humanos , Estudos Prospectivos , Rememoração Mental , Recompensa , Percepção Visual
10.
Front Neurosci ; 17: 1198222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954875

RESUMO

Repetitive transcranial magnetic stimulation (TMS) is widely used in neuroscience and clinical settings to modulate human cortical activity. The effects of TMS on neural activity depend on the excitability of specific neural populations at the time of stimulation. Accordingly, the brain state at the time of stimulation may influence the persistent effects of repetitive TMS on distal brain activity and associated behaviors. We applied intermittent theta burst stimulation (iTBS) to a region in the posterior parietal cortex (PPC) associated with grasp control to evaluate the interaction between stimulation and brain state. Across two experiments, we demonstrate the immediate responses of motor cortex activity and motor performance to state-dependent parietal stimulation. We randomly assigned 72 healthy adult participants to one of three TMS intervention groups, followed by electrophysiological measures with TMS and behavioral measures. Participants in the first group received iTBS to PPC while performing a grasping task concurrently. Participants in the second group received iTBS to PPC while in a task-free, resting state. A third group of participants received iTBS to a parietal region outside the cortical grasping network while performing a grasping task concurrently. We compared changes in motor cortical excitability and motor performance in the three stimulation groups within an hour of each intervention. We found that parietal stimulation during a behavioral manipulation that activates the cortical grasping network increased downstream motor cortical excitability and improved motor performance relative to stimulation during rest. We conclude that constraining the brain state with a behavioral task during brain stimulation has the potential to optimize plasticity induction in cortical circuit mechanisms that mediate movement processes.

11.
Curr Opin Psychol ; 29: 239-247, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31202085

RESUMO

Cerebellar cortex, which is cytoarchitectonically homogenous, can be functionally differentiated by connectivity differences across the cerebral cortex. The cerebral cortical dorsal attention network exhibits strong, selective connectivity with a set of cerebellar circuits, including lobule VIIb/VIIIa. Recent findings demonstrate that lobule VIIb/VIIIa exhibits functional properties characteristic of the cortical dorsal attention network: task-specific activation; working memory load-dependent responses; and the representation of visuospatial location. Moreover, functional cortico-cerebellar subnetworks exhibit topographic specialization for different aspects of visual attentional processing. Thus, cerebellar lobule VIIb/VIIIa, rather than simply supporting motor functions, appears to be an integral part of the brain's visual attentional circuitry. More generally, these findings suggest that parallel cortico-cerebellar networks may play highly specific functional roles in a broad range of cognitive processes.


Assuntos
Atenção , Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Memória de Curto Prazo , Vias Neurais/fisiologia , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética
12.
J Exp Psychol Gen ; 148(8): 1373-1385, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31343232

RESUMO

Brady, Konkle, and Alvarez (2009) argued that statistical learning boosts the number of colors that can be held online in visual working memory (WM). They showed that when specific colors are consistently paired together in a WM task, subjects can take optimal advantage of these regularities to recall more colors, an effect they labeled memory compression. They proposed that memory compression is a product of visual statistical learning, an automatic apprehension of statistical regularities that has been shown in prior work to be disconnected from explicit learning. If statistical learning enables an expansion of the number of individuated representations in visual WM, it would require revision of virtually all models of capacity in this online memory system. That said, this provocative claim is inconsistent with multiple studies that have found no improvement in WM performance following numerous repetitions of specific sample displays (e.g., Logie, Brockmole, & Vandenbroucke, 2009; Olson & Jiang, 2004). Here, we replicate the Brady et al. (2009) findings but show that memory compression effects were restricted to subjects who had perfect explicit recall of the color pairs at the end of the study, suggesting that statistical regularities boosted performance by enabling contributions from long-term memory. Thus, while memory compression effects provide an interesting example of the tight collaboration between online and offline memory representations, they do not provide evidence that statistical regularities can augment the number of individuated representations that can be concurrently stored in visual WM. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Assuntos
Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Percepção Visual/fisiologia , Adulto , Cor , Feminino , Humanos , Masculino , Rememoração Mental/fisiologia , Estimulação Luminosa
13.
Curr Biol ; 28(21): 3364-3372.e5, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30344119

RESUMO

Substantial portions of the cerebellum appear to support non-motor functions; however, previous investigations of cerebellar involvement in cognition have revealed only a coarse degree of specificity. Although somatotopic maps have been observed within cerebellum, similar precision within cortico-cerebellar networks supporting non-motor functions has not previously been reported. Here, we find that human cerebellar lobule VIIb/VIIIa differentially codes key aspects of visuospatial cognition. Ipsilateral visuospatial representations were observed during both a visual working memory and an attentionally demanding visual receptive field-mapping fMRI task paradigm. Moreover, within lobule VIIb/VIIIa, we observed a functional dissociation between spatial coding and visual working memory processing. Visuospatial representations were found in the dorsomedial portion of lobule VIIb/VIIIa, and load-dependent visual working memory processing was shifted ventrolaterally. A similar functional gradient for spatial versus load processing was found in posterior parietal cortex. This cerebral cortical organization was well predicted by functional connectivity with spatial and load regions of cerebellar lobule VIIb/VIIIa. Collectively, our findings indicate that recruitment by visuospatial attentional functions within cerebellar lobule VIIb/VIIIa is highly specific. Furthermore, the topographic arrangement of these functions is mirrored in frontal and parietal cortex. These findings motivate a closer examination of cortico-cerebellar functional specialization across a broad range of cognitive domains.


Assuntos
Atenção/fisiologia , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Memória de Curto Prazo/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Masculino , Percepção Visual/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa