Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Eur Respir J ; 59(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34824054

RESUMO

INTRODUCTION: Asthma is a heterogeneous disease with poorly defined phenotypes. Patients with severe asthma often receive multiple treatments including oral corticosteroids (OCS). Treatment may modify the observed metabotype, rendering it challenging to investigate underlying disease mechanisms. Here, we aimed to identify dysregulated metabolic processes in relation to asthma severity and medication. METHODS: Baseline urine was collected prospectively from healthy participants (n=100), patients with mild-to-moderate asthma (n=87) and patients with severe asthma (n=418) in the cross-sectional U-BIOPRED cohort; 12-18-month longitudinal samples were collected from patients with severe asthma (n=305). Metabolomics data were acquired using high-resolution mass spectrometry and analysed using univariate and multivariate methods. RESULTS: A total of 90 metabolites were identified, with 40 significantly altered (p<0.05, false discovery rate <0.05) in severe asthma and 23 by OCS use. Multivariate modelling showed that observed metabotypes in healthy participants and patients with mild-to-moderate asthma differed significantly from those in patients with severe asthma (p=2.6×10-20), OCS-treated asthmatic patients differed significantly from non-treated patients (p=9.5×10-4), and longitudinal metabotypes demonstrated temporal stability. Carnitine levels evidenced the strongest OCS-independent decrease in severe asthma. Reduced carnitine levels were associated with mitochondrial dysfunction via decreases in pathway enrichment scores of fatty acid metabolism and reduced expression of the carnitine transporter SLC22A5 in sputum and bronchial brushings. CONCLUSIONS: This is the first large-scale study to delineate disease- and OCS-associated metabolic differences in asthma. The widespread associations with different therapies upon the observed metabotypes demonstrate the need to evaluate potential modulating effects on a treatment- and metabolite-specific basis. Altered carnitine metabolism is a potentially actionable therapeutic target that is independent of OCS treatment, highlighting the role of mitochondrial dysfunction in severe asthma.


Assuntos
Antiasmáticos , Asma , Corticosteroides/uso terapêutico , Antiasmáticos/uso terapêutico , Asma/genética , Carnitina/uso terapêutico , Estudos Transversais , Humanos , Índice de Gravidade de Doença , Membro 5 da Família 22 de Carreadores de Soluto
2.
J Pediatr ; 229: 175-181.e1, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33039387

RESUMO

OBJECTIVE: To validate our previously identified candidate metabolites, and to assess the ability of these metabolites to predict hypoxic-ischemic encephalopathy (HIE) both individually and combined with clinical data. STUDY DESIGN: Term neonates with signs of perinatal asphyxia, with and without HIE, and matched controls were recruited prospectively at birth from 2 large maternity units. Umbilical cord blood was collected for later batch metabolomic analysis by mass spectroscopy along with clinical details. The optimum selection of clinical and metabolites features with the ability to predict the development of HIE was determined using logistic regression modelling and machine learning techniques. Outcome of HIE was determined by clinical Sarnat grading and confirmed by electroencephalogram grade at 24 hours. RESULTS: Fifteen of 27 candidate metabolites showed significant alteration in infants with perinatal asphyxia or HIE when compared with matched controls. Metabolomic data predicted the development of HIE with an area under the curve of 0.67 (95% CI, 0.62-0.71). Lactic acid and alanine were the primary metabolite predictors for the development of HIE, and when combined with clinical data, gave an area under the curve of 0.96 (95% CI, 0.92-0.95). CONCLUSIONS: By combining clinical and metabolic data, accurate identification of infants who will develop HIE is possible shortly after birth, allowing early initiation of therapeutic hypothermia.


Assuntos
Sangue Fetal/metabolismo , Hipóxia-Isquemia Encefálica/diagnóstico , Alanina/sangue , Índice de Apgar , Asfixia Neonatal/complicações , Biomarcadores/sangue , Estudos de Casos e Controles , Eletroencefalografia , Humanos , Recém-Nascido , Ácido Láctico/sangue , Modelos Logísticos , Aprendizado de Máquina , Metabolômica , Valor Preditivo dos Testes , Estudos Prospectivos , Ressuscitação , Sensibilidade e Especificidade
3.
Metabolomics ; 16(2): 17, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31965332

RESUMO

INTRODUCTION: Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficients and Variable Importance in Projection scores. In recent years several non-linear machine learning (ML) methods have grown in popularity but with limited uptake essentially due to convoluted optimisation and interpretation. Artificial neural networks (ANNs) are a non-linear projection-based ML method that share a structural equivalence with PLS, and as such should be amenable to equivalent optimisation and interpretation methods. OBJECTIVES: We hypothesise that standardised optimisation, visualisation, evaluation and statistical inference techniques commonly used by metabolomics researchers for PLS-DA can be migrated to a non-linear, single hidden layer, ANN. METHODS: We compared a standardised optimisation, visualisation, evaluation and statistical inference techniques workflow for PLS with the proposed ANN workflow. Both workflows were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks on GitHub. RESULTS: The migration of the PLS workflow to a non-linear, single hidden layer, ANN was successful. There was a similarity in significant metabolites determined using PLS model coefficients and ANN Connection Weight Approach. CONCLUSION: We have shown that it is possible to migrate the standardised PLS-DA workflow to simple non-linear ANNs. This result opens the door for more widespread use and to the investigation of transparent interpretation of more complex ANN architectures.


Assuntos
Análise Discriminante , Análise dos Mínimos Quadrados , Metabolômica , Redes Neurais de Computação , Software
4.
Metabolomics ; 15(12): 150, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31728648

RESUMO

INTRODUCTION: Metabolomics is increasingly being used in the clinical setting for disease diagnosis, prognosis and risk prediction. Machine learning algorithms are particularly important in the construction of multivariate metabolite prediction. Historically, partial least squares (PLS) regression has been the gold standard for binary classification. Nonlinear machine learning methods such as random forests (RF), kernel support vector machines (SVM) and artificial neural networks (ANN) may be more suited to modelling possible nonlinear metabolite covariance, and thus provide better predictive models. OBJECTIVES: We hypothesise that for binary classification using metabolomics data, non-linear machine learning methods will provide superior generalised predictive ability when compared to linear alternatives, in particular when compared with the current gold standard PLS discriminant analysis. METHODS: We compared the general predictive performance of eight archetypal machine learning algorithms across ten publicly available clinical metabolomics data sets. The algorithms were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks. RESULTS: There was only marginal improvement in predictive ability for SVM and ANN over PLS across all data sets. RF performance was comparatively poor. The use of out-of-bag bootstrap confidence intervals provided a measure of uncertainty of model prediction such that the quality of metabolomics data was observed to be a bigger influence on generalised performance than model choice. CONCLUSION: The size of the data set, and choice of performance metric, had a greater influence on generalised predictive performance than the choice of machine learning algorithm.


Assuntos
Análise Discriminante , Metabolômica/classificação , Metabolômica/métodos , Algoritmos , Humanos , Análise dos Mínimos Quadrados , Aprendizado de Máquina , Redes Neurais de Computação , Prognóstico , Máquina de Vetores de Suporte
5.
Metabolomics ; 15(10): 125, 2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31522294

RESUMO

BACKGROUND: A lack of transparency and reporting standards in the scientific community has led to increasing and widespread concerns relating to reproduction and integrity of results. As an omics science, which generates vast amounts of data and relies heavily on data science for deriving biological meaning, metabolomics is highly vulnerable to irreproducibility. The metabolomics community has made substantial efforts to align with FAIR data standards by promoting open data formats, data repositories, online spectral libraries, and metabolite databases. Open data analysis platforms also exist; however, they tend to be inflexible and rely on the user to adequately report their methods and results. To enable FAIR data science in metabolomics, methods and results need to be transparently disseminated in a manner that is rapid, reusable, and fully integrated with the published work. To ensure broad use within the community such a framework also needs to be inclusive and intuitive for both computational novices and experts alike. AIM OF REVIEW: To encourage metabolomics researchers from all backgrounds to take control of their own data science, mould it to their personal requirements, and enthusiastically share resources through open science. KEY SCIENTIFIC CONCEPTS OF REVIEW: This tutorial introduces the concept of interactive web-based computational laboratory notebooks. The reader is guided through a set of experiential tutorials specifically targeted at metabolomics researchers, based around the Jupyter Notebook web application, GitHub data repository, and Binder cloud computing platform.


Assuntos
Computação em Nuvem , Ciência de Dados , Metabolômica , Software , Animais , Humanos
6.
Metabolomics ; 15(11): 142, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628551

RESUMO

BACKGROUND: Metabolomics data, with its complex covariance structure, is typically modelled by projection-based machine learning (ML) methods such as partial least squares (PLS) regression, which project data into a latent structure. Biological data are often non-linear, so it is reasonable to hypothesize that metabolomics data may also have a non-linear latent structure, which in turn would be best modelled using non-linear equations. A non-linear ML method with a similar projection equation structure to PLS is artificial neural networks (ANNs). While ANNs were first applied to metabolic profiling data in the 1990s, the lack of community acceptance combined with limitations in computational capacity and the lack of volume of data for robust non-linear model optimisation inhibited their widespread use. Due to recent advances in computational power, modelling improvements, community acceptance, and the more demanding needs for data science, ANNs have made a recent resurgence in interest across research communities, including a small yet growing usage in metabolomics. As metabolomics experiments become more complex and start to be integrated with other omics data, there is potential for ANNs to become a viable alternative to linear projection methods. AIM OF REVIEW: We aim to first describe ANNs and their structural equivalence to linear projection-based methods, including PLS regression. We then review the historical, current, and future uses of ANNs in the field of metabolomics. KEY SCIENTIFIC CONCEPT OF REVIEW: Is metabolomics ready for the return of artificial neural networks?


Assuntos
Metabolômica , Redes Neurais de Computação , Algoritmos , Análise dos Mínimos Quadrados , Aprendizado de Máquina
7.
Exp Physiol ; 104(1): 81-92, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30311980

RESUMO

NEW FINDINGS: What is the central question of this study? Does 14 days of live-high, train-low simulated altitude alter an individual's metabolomic/metabolic profile? What is the main finding and its importance? This study demonstrated that ∼200 h of moderate simulated altitude exposure resulted in greater variance in measured metabolites between subject than within subject, which indicates individual variability during the adaptive phase to altitude exposure. In addition, metabolomics results indicate that altitude alters multiple metabolic pathways, and the time course of these pathways is different over 14 days of altitude exposure. These findings support previous literature and provide new information on the acute adaptation response to altitude. ABSTRACT: The purpose of this study was to determine the influence of 14 days of normobaric hypoxic simulated altitude exposure at 3000 m on the human plasma metabolomic profile. For 14 days, 10 well-trained endurance runners (six men and four women; 29 ± 7 years of age) lived at 3000 m simulated altitude, accumulating 196.4 ± 25.6 h of hypoxic exposure, and trained at ∼600 m. Resting plasma samples were collected at baseline and on days 3 and 14 of altitude exposure and stored at -80°C. Plasma samples were analysed using liquid chromatography-high-resolution mass spectrometry to construct a metabolite profile of altitude exposure. Mass spectrometry of plasma identified 36 metabolites, of which eight were statistically significant (false discovery rate probability 0.1) from baseline to either day 3 or day 14. Specifically, changes in plasma metabolites relating to amino acid metabolism (tyrosine and proline), glycolysis (adenosine) and purine metabolism (adenosine) were observed during altitude exposure. Principal component canonical variate analysis showed significant discrimination between group means (P < 0.05), with canonical variate 1 describing a non-linear recovery trajectory from baseline to day 3 and then back to baseline by day 14. Conversely, canonical variate 2 described a weaker non-recovery trajectory and increase from baseline to day 3, with a further increase from day 3 to 14. The present study demonstrates that metabolomics can be a useful tool to monitor metabolic changes associated with altitude exposure. Furthermore, it is apparent that altitude exposure alters multiple metabolic pathways, and the time course of these changes is different over 14 days of altitude exposure.


Assuntos
Altitude , Hipóxia/metabolismo , Metaboloma/fisiologia , Consumo de Oxigênio/fisiologia , Adulto , Feminino , Humanos , Masculino , Metabolômica/métodos , Descanso/fisiologia , Corrida/fisiologia , Adulto Jovem
8.
Anal Chem ; 90(22): 13400-13408, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30335973

RESUMO

Integration of multiomics data remains a key challenge in fulfilling the potential of comprehensive systems biology. Multiple-block orthogonal projections to latent structures (OnPLS) is a projection method that simultaneously models multiple data matrices, reducing feature space without relying on a priori biological knowledge. In order to improve the interpretability of OnPLS models, the associated multi-block variable influence on orthogonal projections (MB-VIOP) method is used to identify variables with the highest contribution to the model. This study combined OnPLS and MB-VIOP with interactive visualization methods to interrogate an exemplar multiomics study, using a subset of 22 individuals from an asthma cohort. Joint data structure in six data blocks was assessed: transcriptomics; metabolomics; targeted assays for sphingolipids, oxylipins, and fatty acids; and a clinical block including lung function, immune cell differentials, and cytokines. The model identified seven components, two of which had contributions from all blocks (globally joint structure) and five that had contributions from two to five blocks (locally joint structure). Components 1 and 2 were the most informative, identifying differences between healthy controls and asthmatics and a disease-sex interaction, respectively. The interactions between features selected by MB-VIOP were visualized using chord plots, yielding putative novel insights into asthma disease pathogenesis, the effects of asthma treatment, and biological roles of uncharacterized genes. For example, the gene ATP6 V1G1, which has been implicated in osteoporosis, correlated with metabolites that are dysregulated by inhaled corticoid steroids (ICS), providing insight into the mechanisms underlying bone density loss in asthma patients taking ICS. These results show the potential for OnPLS, combined with MB-VIOP variable selection and interaction visualization techniques, to generate hypotheses from multiomics studies and inform biology.


Assuntos
Asma/metabolismo , Análise de Dados , Biologia de Sistemas/métodos , Adulto , Asma/genética , Feminino , Genômica/métodos , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Análise Multivariada , Proteômica/métodos , Linfócitos T/metabolismo , Adulto Jovem
9.
Retrovirology ; 11: 35, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24886384

RESUMO

BACKGROUND: Human immunodeficiency virus type 1(HIV-1) infects and activates innate immune cells in the brain resulting in inflammation and neuronal death with accompanying neurological deficits. Induction of inflammasomes causes cleavage and release of IL-1ß and IL-18, representing pathogenic processes that underlie inflammatory diseases although their contribution HIV-associated brain disease is unknown. RESULTS: Investigation of inflammasome-associated genes revealed that IL-1ß, IL-18 and caspase-1 were induced in brains of HIV-infected persons and detected in brain microglial cells. HIV-1 infection induced pro-IL-1ß in human microglia at 4 hr post-infection with peak IL-1ß release at 24 hr, which was accompanied by intracellular ASC translocation and caspase-1 activation. HIV-dependent release of IL-1ß from a human macrophage cell line, THP-1, was inhibited by NLRP3 deficiency and high extracellular [K+]. Exposure of microglia to HIV-1 gp120 caused IL-1ß production and similarly, HIV-1 envelope pseudotyped viral particles induced IL-1ß release, unlike VSV-G pseudotyped particles. Infection of cultured feline macrophages by the related lentivirus, feline immunodeficiency virus (FIV), also resulted in the prompt induction of IL-1ß. In vivo FIV infection activated multiple inflammasome-associated genes in microglia, which was accompanied by neuronal loss in cerebral cortex and neurological deficits. Multivariate analyses of data from FIV-infected and uninfected animals disclosed that IL-1ß, NLRP3 and caspase-1 expression in cerebral cortex represented key molecular determinants of neurological deficits. CONCLUSIONS: NLRP3 inflammasome activation was an early and integral aspect of lentivirus infection of microglia, which was associated with lentivirus-induced brain disease. Inflammasome activation in the brain might represent a potential target for therapeutic interventions in HIV/AIDS.


Assuntos
Síndrome da Imunodeficiência Adquirida/metabolismo , Síndrome da Imunodeficiência Adquirida/virologia , Encefalopatias/metabolismo , Encefalopatias/virologia , Infecções por HIV/metabolismo , HIV-1 , Inflamassomos/metabolismo , Microglia/metabolismo , Animais , Caspase 1/metabolismo , Gatos , Linhagem Celular , Córtex Cerebral/metabolismo , Córtex Cerebral/virologia , Feminino , Infecções por HIV/virologia , Humanos , Vírus da Imunodeficiência Felina , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Microglia/virologia , Gravidez
10.
EBioMedicine ; 102: 105025, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458111

RESUMO

BACKGROUND: Lung function trajectories (LFTs) have been shown to be an important measure of long-term health in asthma. While there is a growing body of metabolomic studies on asthma status and other phenotypes, there are no prospective studies of the relationship between metabolomics and LFTs or their genomic determinants. METHODS: We utilized ordinal logistic regression to identify plasma metabolite principal components associated with four previously-published LFTs in children from the Childhood Asthma Management Program (CAMP) (n = 660). The top significant metabolite principal component (PCLF) was evaluated in an independent cross-sectional child cohort, the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (n = 1151) and evaluated for association with spirometric measures. Using meta-analysis of CAMP and GACRS, we identified associations between PCLF and microRNA, and SNPs in their target genes. Statistical significance was determined using an false discovery rate-adjusted Q-value. FINDINGS: The top metabolite principal component, PCLF, was significantly associated with better LFTs after multiple-testing correction (Q-value = 0.03). PCLF is composed of the urea cycle, caffeine, corticosteroid, carnitine, and potential microbial (secondary bile acid, tryptophan, linoleate, histidine metabolism) metabolites. Higher levels of PCLF were also associated with increases in lung function measures and decreased circulating neutrophil percentage in both CAMP and GACRS. PCLF was also significantly associated with microRNA miR-143-3p, and SNPs in three miR-143-3p target genes; CCZ1 (P-value = 2.6 × 10-5), SLC8A1 (P-value = 3.9 × 10-5); and TENM4 (P-value = 4.9 × 10-5). INTERPRETATION: This study reveals associations between metabolites, miR-143-3p and LFTs in children with asthma, offering insights into asthma physiology and possible interventions to enhance lung function and long-term health. FUNDING: Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung, and Blood Institute (NHLBI).


Assuntos
Asma , MicroRNAs , Criança , Humanos , Estudos Transversais , Pulmão/metabolismo , MicroRNAs/metabolismo , Metabolômica
11.
J Proteome Res ; 12(9): 4230-9, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23931672

RESUMO

Neonatal hypoxic ischemic encephalopathy (HIE) is a severe consequence of perinatal asphyxia (PA) that can result in life-long neurological disability. Disease mechanisms, including the role and interaction of individual metabolic pathways, remain unclear. As hypoxia is an acute condition, aerobic energy metabolism is central to global metabolic pathways, and these metabolites are detectable using 1H NMR spectroscopy, we hypothesized that characterizing the NMR-derived umbilical cord serum metabolome would offer insight into the consequences of PA that lead to HIE. Fifty-nine at-risk infants were enrolled, together with 1:1 matched healthy controls, and stratified by disease severity (n=25, HIE; n=34, non-HIE PA). Eighteen of 37 reproducibly detectable metabolites were significantly altered between study groups. Acetone, 3-hydroxybutyrate, succinate, and glycerol were significantly differentially altered in severe HIE. Multivariate data analysis revealed a metabolite profile associated with both asphyxia and HIE. Multiple-linear regression modeling using 4 metabolites (3-hydroxybutyrate, glycerol, O-phosphocholine, and succinate) predicted HIE severity with an adjusted R2 of 0.4. Altered ketones suggest that systemic metabolism may play a critical role in preventing neurological injury, while altered succinate provides a possible explanation for hypoxia-inducible factor 1-α (HIF-1α) stabilization in HI injury.


Assuntos
Asfixia Neonatal/sangue , Sangue Fetal/metabolismo , Hipóxia-Isquemia Encefálica/sangue , Metaboloma , Ácido 3-Hidroxibutírico/sangue , Acetona/sangue , Estudos de Casos e Controles , Feminino , Glicerol/sangue , Humanos , Recém-Nascido , Espectroscopia de Ressonância Magnética , Masculino , Curva ROC , Ácido Succínico/sangue
12.
Chem Soc Rev ; 40(1): 387-426, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20717559

RESUMO

The study of biological systems in a holistic manner (systems biology) is increasingly being viewed as a necessity to provide qualitative and quantitative descriptions of the emergent properties of the complete system. Systems biology performs studies focussed on the complex interactions of system components; emphasising the whole system rather than the individual parts. Many perturbations to mammalian systems (diet, disease, drugs) are multi-factorial and the study of small parts of the system is insufficient to understand the complete phenotypic changes induced. Metabolomics is one functional level tool being employed to investigate the complex interactions of metabolites with other metabolites (metabolism) but also the regulatory role metabolites provide through interaction with genes, transcripts and proteins (e.g. allosteric regulation). Technological developments are the driving force behind advances in scientific knowledge. Recent advances in the two analytical platforms of mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have driven forward the discipline of metabolomics. In this critical review, an introduction to metabolites, metabolomes, metabolomics and the role of MS and NMR spectroscopy will be provided. The applications of metabolomics in mammalian systems biology for the study of the health-disease continuum, drug efficacy and toxicity and dietary effects on mammalian health will be reviewed. The current limitations and future goals of metabolomics in systems biology will also be discussed (374 references).


Assuntos
Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metaboloma , Metabolômica/métodos , Animais , Cromatografia Líquida de Alta Pressão , Eletroforese , Cromatografia Gasosa-Espectrometria de Massas
13.
Front Mol Biosci ; 9: 957549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090035

RESUMO

Introduction: The AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that becomes activated by exercise and binds glycogen, an important energy store required to meet exercise-induced energy demands. Disruption of AMPK-glycogen interactions in mice reduces exercise capacity and impairs whole-body metabolism. However, the mechanisms underlying these phenotypic effects at rest and following exercise are unknown. Furthermore, the plasma metabolite responses to an acute exercise challenge in mice remain largely uncharacterized. Methods: Plasma samples were collected from wild type (WT) and AMPK double knock-in (DKI) mice with disrupted AMPK-glycogen binding at rest and following 30-min submaximal treadmill running. An untargeted metabolomics approach was utilized to determine the breadth of plasma metabolite changes occurring in response to acute exercise and the effects of disrupting AMPK-glycogen binding. Results: Relative to WT mice, DKI mice had reduced maximal running speed (p < 0.0001) concomitant with increased body mass (p < 0.01) and adiposity (p < 0.001). A total of 83 plasma metabolites were identified/annotated, with 17 metabolites significantly different (p < 0.05; FDR<0.1) in exercised (↑6; ↓11) versus rested mice, including amino acids, acylcarnitines and steroid hormones. Pantothenic acid was reduced in DKI mice versus WT. Distinct plasma metabolite profiles were observed between the rest and exercise conditions and between WT and DKI mice at rest, while metabolite profiles of both genotypes converged following exercise. These differences in metabolite profiles were primarily explained by exercise-associated increases in acylcarnitines and steroid hormones as well as decreases in amino acids and derivatives following exercise. DKI plasma showed greater decreases in amino acids following exercise versus WT. Conclusion: This is the first study to map mouse plasma metabolomic changes following a bout of acute exercise in WT mice and the effects of disrupting AMPK-glycogen interactions in DKI mice. Untargeted metabolomics revealed alterations in metabolite profiles between rested and exercised mice in both genotypes, and between genotypes at rest. This study has uncovered known and previously unreported plasma metabolite responses to acute exercise in WT mice, as well as greater decreases in amino acids following exercise in DKI plasma. Reduced pantothenic acid levels may contribute to differences in fuel utilization in DKI mice.

14.
Front Immunol ; 13: 876654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990635

RESUMO

Appropriate innate immune function is essential to limit pathogenesis and severity of severe lower respiratory infections (sLRI) during infancy, a leading cause of hospitalization and risk factor for subsequent asthma in this age group. Employing a systems biology approach to analysis of multi-omic profiles generated from a high-risk cohort (n=50), we found that the intensity of activation of an LPS-induced interferon gene network at birth was predictive of sLRI risk in infancy (AUC=0.724). Connectivity patterns within this network were stronger among susceptible individuals, and a systems biology approach identified IRF1 as a putative master regulator of this response. These findings were specific to the LPS-induced interferon response and were not observed following activation of viral nucleic acid sensing pathways. Comparison of responses at birth versus age 5 demonstrated that LPS-induced interferon responses but not responses triggered by viral nucleic acid sensing pathways may be subject to strong developmental regulation. These data suggest that the risk of sLRI in early life is in part already determined at birth, and additionally that the developmental status of LPS-induced interferon responses may be a key determinant of susceptibility. Our findings provide a rationale for the identification of at-risk infants for early intervention aimed at sLRI prevention and identifies targets which may be relevant for drug development.


Assuntos
Asma , Ácidos Nucleicos , Infecções Respiratórias , Antivirais , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Interferons , Lipopolissacarídeos/farmacologia
15.
J Proteome Res ; 10(8): 3660-73, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21671558

RESUMO

Being born small for gestational age (SGA) confers increased risks of perinatal morbidity and mortality and increases the risk of cardiovascular complications and diabetes in later life. Accumulating evidence suggests that the etiology of SGA is usually associated with poor placental vascular development in early pregnancy. We examined metabolomic profiles using ultra performance liquid chromatography-mass spectrometry (UPLC-MS) in three independent studies: (a) venous cord plasma from normal and SGA babies, (b) plasma from a rat model of placental insufficiency and controls, and (c) early pregnancy peripheral plasma samples from women who subsequently delivered a SGA baby and controls. Multivariate analysis by cross-validated Partial Least Squares Discriminant Analysis (PLS-DA) of all 3 studies showed a comprehensive and similar disruption of plasma metabolism. A multivariate predictive model combining 19 metabolites produced by a Genetic Algorithm-based search program gave an Odds Ratio for developing SGA of 44, with an area under the Receiver Operator Characteristic curve of 0.9. Sphingolipids, phospholipids, carnitines, and fatty acids were among this panel of metabolites. The finding of a consistent discriminatory metabolite signature in early pregnancy plasma preceding the onset of SGA offers insight into disease pathogenesis and offers the promise of a robust presymptomatic screening test.


Assuntos
Recém-Nascido Pequeno para a Idade Gestacional , Primeiro Trimestre da Gravidez/metabolismo , Animais , Cromatografia Líquida , Feminino , Retardo do Crescimento Fetal , Humanos , Recém-Nascido , Espectrometria de Massas , Modelos Animais , Análise Multivariada , Gravidez , Curva ROC , Ratos , Ratos Sprague-Dawley
16.
Front Mol Biosci ; 8: 650839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937331

RESUMO

Captive breeding is a vital tool in the conservation of highly endangered species, as it is for the Margaret River hairy marron, Cherax tenuimanus, from the south west of Australia. A close relative, Cherax cainii, has almost completely displaced C. tenuimanus in the wild and is a successful aquaculture species, whereas C. tenuimanus has performed poorly in captivity. We used untargeted liquid chromatography-mass spectrometry to obtain metabolomic profiles of female and male C. tenuimanus held in controlled aquarium conditions during their reproductive period. Using repeated haemolymph sampling we tracked the metabolomic profiles of animals just prior to and for a period of up to 34 days after pairing with a similar sized potential mate. We identified 54 reproducible annotated metabolites including amino acids, fatty acids, biogenic amines, purine and pyrimidine metabolites and excretion metabolites. Hierarchical clustering analysis distinguished five metabolite clusters. Principal component-canonical variate analysis clearly distinguished females from males, both unpaired and paired; similar trends in profile changes in both sexes after pairing; and a striking shift in males upon pairing. We discuss three main patterns of metabolomic responses: differentiation between sexes; reactive responses to the disturbance of pairing; and convergent response to the disturbance of pairing for males. Females generally had higher concentrations of metabolites involved in metabolic rate, mobilisation of energy stores and stress. Responses to the disturbance of pairing were also related to elevated stress. Females were mobilising lipid stores to deposit yolk, whereas males had a rapid and strong response to pairing, with shifts in metabolites associated with gonad development and communication, indicating males could complete reproductive readiness only once paired with a female. The metabolomic profiles support a previously proposed potential mechanism for displacement of C. tenuimanus by C. cainii in the wild and identify several biomarkers for testing hypotheses regarding reproductive success using targeted metabolomics.

17.
Sci Signal ; 14(690)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230210

RESUMO

Coronavirus disease 2019 (COVID-19) has poorer clinical outcomes in males than in females, and immune responses underlie these sex-related differences. Because immune responses are, in part, regulated by metabolites, we examined the serum metabolomes of COVID-19 patients. In male patients, kynurenic acid (KA) and a high KA-to-kynurenine (K) ratio (KA:K) positively correlated with age and with inflammatory cytokines and chemokines and negatively correlated with T cell responses. Males that clinically deteriorated had a higher KA:K than those that stabilized. KA inhibits glutamate release, and glutamate abundance was lower in patients that clinically deteriorated and correlated with immune responses. Analysis of data from the Genotype-Tissue Expression (GTEx) project revealed that the expression of the gene encoding the enzyme that produces KA, kynurenine aminotransferase, correlated with cytokine abundance and activation of immune responses in older males. This study reveals that KA has a sex-specific link to immune responses and clinical outcomes in COVID-19, suggesting a positive feedback between metabolites and immune responses in males.


Assuntos
COVID-19/imunologia , Ácido Cinurênico/imunologia , SARS-CoV-2 , Adulto , Idoso , COVID-19/sangue , Estudos de Casos e Controles , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/imunologia , Citocinas/sangue , Citocinas/imunologia , Feminino , Humanos , Ácido Cinurênico/sangue , Modelos Logísticos , Masculino , Redes e Vias Metabólicas/imunologia , Metabolômica , Pessoa de Meia-Idade , Análise Multivariada , Índice de Gravidade de Doença , Fatores Sexuais , Transdução de Sinais/imunologia , Triptofano/metabolismo
18.
medRxiv ; 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32935119

RESUMO

Coronavirus disease-2019 (COVID-19) has poorer clinical outcomes in males compared to females, and immune responses underlie these sex-related differences in disease trajectory. As immune responses are in part regulated by metabolites, we examined whether the serum metabolome has sex-specificity for immune responses in COVID-19. In males with COVID- 19, kynurenic acid (KA) and a high KA to kynurenine (K) ratio was positively correlated with age, inflammatory cytokines, and chemokines and was negatively correlated with T cell responses, revealing that KA production is linked to immune responses in males. Males that clinically deteriorated had a higher KA:K ratio than those that stabilized. In females with COVID-19, this ratio positively correlated with T cell responses and did not correlate with age or clinical severity. KA is known to inhibit glutamate release, and we observed that serum glutamate is lower in patients that deteriorate from COVID-19 compared to those that stabilize, and correlates with immune responses. Analysis of Genotype-Tissue Expression (GTEx) data revealed that expression of kynurenine aminotransferase, which regulates KA production, correlates most strongly with cytokine levels and aryl hydrocarbon receptor activation in older males. This study reveals that KA has a sex-specific link to immune responses and clinical outcomes, in COVID-19 infection.

19.
Anal Chem ; 81(16): 7038-46, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19606840

RESUMO

A method for the preparation and GC-TOF-MS analysis of human serum samples has been developed and evaluated for application in long-term metabolomic studies. Serum samples were deproteinized using 3:1 methanol/serum, dried in a vacuum concentrator, and chemically derivatized in a two-stage process. Samples were analyzed by GC-TOF-MS with a 25 min analysis time. In addition, quality control (QC) samples were used to quantify process variability. Optimization of chemical derivatization was performed. Products were found to be stable for 30 h after derivatization. An assessment of within-day repeatability and within-week reproducibility demonstrates that excellent performance is observed with our developed method. Analyses were consistent over a 5 month period. Additional method testing, using spiked serum samples, showed the ability to define metabolite differences between samples from a population and samples spiked with metabolites standards. This methodology allows the continuous acquisition and application of data acquired over many months in long-term metabolomic studies, including the HUSERMET project (http://www.husermet.org/).


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica , Proteínas Sanguíneas/análise , Humanos , Controle de Qualidade , Reprodutibilidade dos Testes
20.
J Cereb Blood Flow Metab ; 39(1): 147-162, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-28840775

RESUMO

Elucidating metabolic effects of hypoxic-ischaemic encephalopathy (HIE) may reveal early biomarkers of injury and new treatment targets. This study uses untargeted metabolomics to examine early metabolic alterations in a carefully defined neonatal population. Infants with perinatal asphyxia who were resuscitated at birth and recovered (PA group), those who developed HIE (HIE group) and healthy controls were all recruited at birth. Metabolomic analysis of cord blood was performed using direct infusion FT-ICR mass spectrometry. For each reproducibly detected metabolic feature, mean fold differences were calculated HIE vs. controls (ΔHIE) and PA vs. controls (ΔPA). Putative metabolite annotations were assigned and pathway analysis was performed. Twenty-nine putatively annotated metabolic features were significantly different in ΔPA after false discovery correction ( q < 0.05), with eight of these also significantly altered in ΔHIE. Altered putative metabolites included; melatonin, leucine, kynurenine and 3-hydroxydodecanoic acid which differentiated between infant groups (ΔPA and ΔHIE); and D-erythrose-phosphate, acetone, 3-oxotetradecanoic acid and methylglutarylcarnitine which differentiated across severity grades of HIE. Pathway analysis revealed ΔHIE was associated with a 50% and 75% perturbation of tryptophan and pyrimidine metabolism, respectively. We have identified perturbed metabolic pathways and potential biomarkers specific to PA and HIE, which measured at birth, may help direct treatment.


Assuntos
Asfixia Neonatal/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Redes e Vias Metabólicas , Metabolômica/métodos , Biomarcadores , Química Encefálica , Feminino , Sangue Fetal/química , Humanos , Recém-Nascido , Masculino , Ressuscitação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa