Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(23): e2216799120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252988

RESUMO

ZC3H11A (zinc finger CCCH domain-containing protein 11A) is a stress-induced mRNA-binding protein required for efficient growth of nuclear-replicating viruses. The cellular functions of ZC3H11A during embryonic development are unknown. Here, we report the generation and phenotypic characterization of Zc3h11a knockout (KO) mice. Heterozygous null Zc3h11a mice were born at the expected frequency without distinguishable phenotypic differences compared with wild-type mice. In contrast, homozygous null Zc3h11a mice were missing, indicating that Zc3h11a is crucial for embryonic viability and survival. Zc3h11a -/- embryos were detected at the expected Mendelian ratios up to late preimplantation stage (E4.5). However, phenotypic characterization at E6.5 revealed degeneration of Zc3h11a -/- embryos, indicating developmental defects around the time of implantation. Transcriptomic analyses documented a dysregulation of glycolysis and fatty acid metabolic pathways in Zc3h11a-/- embryos at E4.5. Proteomic analysis indicated a tight interaction between ZC3H11A and mRNA-export proteins in embryonic stem cells. CLIP-seq analysis demonstrated that ZC3H11A binds a subset of mRNA transcripts that are critical for metabolic regulation of embryonic cells. Furthermore, embryonic stem cells with an induced deletion of Zc3h11a display an impaired differentiation toward epiblast-like cells and impaired mitochondrial membrane potential. Altogether, the results show that ZC3H11A is participating in export and posttranscriptional regulation of selected mRNA transcripts required to maintain metabolic processes in embryonic cells. While ZC3H11A is essential for the viability of the early mouse embryo, inactivation of Zc3h11a expression in adult tissues using a conditional KO did not lead to obvious phenotypic defects.


Assuntos
Implantação do Embrião , Proteínas Nucleares , Proteômica , Proteínas de Ligação a RNA , Animais , Feminino , Camundongos , Gravidez , Implantação do Embrião/genética , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Knockout , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Nucleares/genética
2.
Mol Cell ; 65(5): 873-884.e8, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28257702

RESUMO

Understanding the mechanism of resistance of genes to reactivation will help improve the success of nuclear reprogramming. Using mouse embryonic fibroblast nuclei with normal or reduced DNA methylation in combination with chromatin modifiers able to erase H3K9me3, H3K27me3, and H2AK119ub1 from transplanted nuclei, we reveal the basis for resistance of genes to transcriptional reprogramming by oocyte factors. A majority of genes is affected by more than one type of treatment, suggesting that resistance can require repression through multiple epigenetic mechanisms. We classify resistant genes according to their sensitivity to 11 chromatin modifier combinations, revealing the existence of synergistic as well as adverse effects of chromatin modifiers on removal of resistance. We further demonstrate that the chromatin modifier USP21 reduces resistance through its H2AK119 deubiquitylation activity. Finally, we provide evidence that H2A ubiquitylation also contributes to resistance to transcriptional reprogramming in mouse nuclear transfer embryos.


Assuntos
Núcleo Celular/metabolismo , Reprogramação Celular , Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Histonas/metabolismo , Técnicas de Transferência Nuclear , Transcrição Gênica , Animais , Animais Geneticamente Modificados , Linhagem Celular , Cromatina/genética , Montagem e Desmontagem da Cromatina , Clonagem Molecular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Oócitos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Xenopus laevis
3.
Neurobiol Dis ; 167: 105664, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35183703

RESUMO

Anti-seizure medications (ASMs) are the first line of treatment for seizure control in children with epilepsy. Cumulative evidence suggests an imbalanced gut microbiota in refractory epilepsy patients. We systematically investigated the differential antimicrobial impacts of nine ASM active ingredients, seven common excipients of ASMs, and four syrup formulations on core early-life gut microbiota strains. Additionally, we evaluated the toxicity and gene expression profiles of HT-29 colon epithelial cells when exposed to active ingredients with or without bacterial supernatants. The physicochemical structure of ASM active ingredients and bacterial phylogeny were found to be related to ASM toxicity. Carbamazepine, lamotrigine, and topiramate reduced the growth of more than ten strains along with syrup excipient propyl-paraben. Various artificial sweeteners present in ASM formulations stimulated the growth of gut bacterial strains. The active ingredients that were more toxic to bacterial strains also exhibited toxicity towards HT-29 cells, yet Bifidobacterium longum supernatant reduced cytotoxic effects of carbamazepine and lamotrigine. Akkermansia muciniphila or mixed community supernatants reduced the expression of drug resistance genes in HT-29 cell lines. In summary, our results indicate that several ASM active ingredients and their excipients regulate the growth of gut bacterial strains in a species-specific manner. Interactions between ASMs and gut epithelial cells might be modulated by gut microbial metabolites.


Assuntos
Epilepsia , Microbioma Gastrointestinal , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Criança , Epilepsia/tratamento farmacológico , Humanos , Lamotrigina/farmacologia , Lamotrigina/uso terapêutico , Topiramato
4.
Genes Dev ; 26(9): 920-32, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22499591

RESUMO

In mammals, totipotent embryos are formed by fusion of highly differentiated gametes. Acquisition of totipotency concurs with chromatin remodeling of parental genomes, changes in the maternal transcriptome and proteome, and zygotic genome activation (ZGA). The inefficiency of reprogramming somatic nuclei in reproductive cloning suggests that intergenerational inheritance of germline chromatin contributes to developmental proficiency after natural conception. Here we show that Ring1 and Rnf2, components of Polycomb-repressive complex 1 (PRC1), serve redundant transcriptional functions during oogenesis that are essential for proper ZGA, replication and cell cycle progression in early embryos, and development beyond the two-cell stage. Exchange of chromosomes between control and Ring1/Rnf2-deficient metaphase II oocytes reveal cytoplasmic and chromosome-based contributions by PRC1 to embryonic development. Our results strongly support a model in which Polycomb acts in the female germline to establish developmental competence for the following generation by silencing differentiation-inducing genes and defining appropriate chromatin states.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Oogênese/genética , Proteínas Repressoras/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Blastocisto/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Replicação do DNA , Proteínas de Ligação a DNA/genética , Feminino , Fator de Transcrição GATA4/genética , Meiose/genética , Camundongos , Camundongos Mutantes , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Proteínas Repressoras/genética , Transcrição Gênica , Ubiquitina-Proteína Ligases/genética , Zigoto/metabolismo
5.
RNA ; 18(2): 253-64, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22201644

RESUMO

Over the last years, the microRNA (miRNA) pathway has emerged as a key component of the regulatory network of pluripotency. Although clearly distinct states of pluripotency have been described in vivo and ex vivo, differences in miRNA expression profiles associated with the developmental modulation of pluripotency have not been extensively studied so far. Here, we performed deep sequencing to profile miRNA expression in naive (embryonic stem cell [ESC]) and primed (epiblast stem cell [EpiSC]) pluripotent stem cells derived from mouse embryos of identical genetic background. We developed a graphical representation method allowing the rapid identification of miRNAs with an atypical profile including mirtrons, a small nucleolar RNA (snoRNA)-derived miRNA, and miRNAs whose biogenesis may differ between ESC and EpiSC. Comparison of mature miRNA profiles revealed that ESCs and EpiSCs exhibit very different miRNA signatures with one third of miRNAs being differentially expressed between the two cell types. Notably, differential expression of several clusters, including miR290-295, miR17-92, miR302/367, and a large repetitive cluster on chromosome 2, was observed. Our analysis also showed that differentiation priming of EpiSC compared to ESC is evidenced by changes in miRNA expression. These dynamic changes in miRNAs signature are likely to reflect both redundant and specific roles of miRNAs in the fine-tuning of pluripotency during development.


Assuntos
Células-Tronco Embrionárias/metabolismo , MicroRNAs/biossíntese , MicroRNAs/genética , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Bases de Dados de Ácidos Nucleicos , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica/métodos , Camundongos , Células-Tronco Pluripotentes/citologia
6.
Proc Natl Acad Sci U S A ; 108(42): 17331-6, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21908712

RESUMO

Transfer of somatic cell nuclei to enucleated eggs and ectopic expression of specific transcription factors are two different reprogramming strategies used to generate pluripotent cells from differentiated cells. However, these methods are poorly efficient, and other unknown factors might be required to increase their success rate. Here we show that Xenopus egg extracts at the metaphase stage (M phase) have a strong reprogramming activity on mouse embryonic fibroblasts (MEFs). First, they reset replication properties of MEF nuclei toward a replication profile characteristic of early development, and they erase several epigenetic marks, such as trimethylation of H3K9, H3K4, and H4K20. Second, when MEFs are reversibly permeabilized in the presence of M-phase Xenopus egg extracts, they show a transient increase in cell proliferation, form colonies, and start to express specific pluripotency markers. Finally, transient exposure of MEF nuclei to M-phase Xenopus egg extracts increases the success of nuclear transfer to enucleated mouse oocytes and strongly synergizes with the production of pluripotent stem cells by ectopic expression of transcription factors. The mitotic stage of the egg extract is crucial, because none of these effects is detected when using interphasic Xenopus egg extracts. Our data demonstrate that mitosis is essential to make mammalian somatic nuclei prone to reprogramming and that, surprisingly, the heterologous Xenopus system has features that are conserved enough to remodel mammalian nuclei.


Assuntos
Desdiferenciação Celular/fisiologia , Oócitos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Desdiferenciação Celular/genética , Células Cultivadas , Montagem e Desmontagem da Cromatina/genética , Primers do DNA/genética , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mitose , Técnicas de Transferência Nuclear , Oócitos/citologia , Xenopus
7.
Ann Intensive Care ; 14(1): 4, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38185760

RESUMO

BACKGROUND: Aquaporin-4 immunoglobulin G Neuro Myelitis Optica spectrum disorders attacks (NMOSD-AQP4-IgG+ attacks) can cause respiratory failure requiring orotracheal intubation (OTI), but the risk factors and outcomes of OTI during attacks remain unclear. Our primary objective was to identify the clinical and radiological risk factors for OTI in NMOSD-AQP4-IgG+ attacks. As a secondary objective, we aimed to evaluate the prognosis of OTI-attacks. METHODS: We retrospectively analyzed NMOSD-AQP4-IgG+ attacks at the Pitié-Salpêtrière Hospital (Jan 2010-Jan 2021), excluding isolated optic neuritis. The primary outcome was the need for OTI due to neurological dysfunction an attack (OTI-attack). The secondary outcome was attack's poor recovery after 12 months, defined as a modified Rankin score (mRS) > 2 in patients with an initial mRS ≤ 2, or an increase ≥ 1 point in mRS in other patients. Analyses were performed using a binomial generalized linear mixed model, with a random intercept for the patient ID to account for within-patient correlations. RESULTS: Seventy-three attacks in 44 patients NMOSD-AQP4-IgG+ were analyzed. Of 73 attacks, 8 (11%) required OTI during the attack, related to acute restrictive respiratory failure (n = 7) and/or severe swallowing disorder (n = 2). None of the OTI-attacks occurred in patients previously treated with active disease-modifying treatment (DMT), while 36 (55.4%) of the non-OTI-attacks occurred in patients who were already on active DMT. On admission, OTI-attacks were more likely to have upper limbs motor paresis of (75.0% versus 29.2%, p = 0.366) and dyspnea (3 [50.0%] versus 4 [6.6%], p = 0.002) compared to non-OTI-attacks. MRI analysis showed that OTI-attacks had edematous lesions in the cervical spinal cord, mainly at levels C1 (75% versus 0% in non-OTI-attacks), C2 (75% versus 1.9%), C3 (62.5% versus 1.9%), and C4 and C5 levels (50% versus to 3.9%). One OTI-attack resulted in the death of one patient. Five patients with OTI-attack had mRS ≤ 2 one year after OTI-attack. Two (25%) OTI-attacks had poor recovery compared to 15 (24.2%) non-OTI-attacks (p = 0.468). CONCLUSION: OTI-attacks occurred in untreated NMOSD-AQP4-IgG+ patients and were associated with edematous upper cervical lesions. The prognosis of these attacks may be favorable, and warrant maximal medical and supportive treatment. Trial registration This was a retrospective observational monocentric cohort study nested in the NOMADMUS cohort (ClinicalTrials.gov Identifier: NCT02850705).

8.
Gut Microbes ; 16(1): 2295384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38126163

RESUMO

The anaerobic bacterium Fusobacterium nucleatum is significantly associated with human colorectal cancer (CRC) and is considered a significant contributor to the disease. The mechanisms underlying the promotion of intestinal tumor formation by F. nucleatum have only been partially uncovered. Here, we showed that F. nucleatum releases a metabolite into the microenvironment that strongly activates NF-κB in intestinal epithelial cells via the ALPK1/TIFA/TRAF6 pathway. Furthermore, we showed that the released molecule had the biological characteristics of ADP-heptose. We observed that F. nucleatum induction of this pathway increased the expression of the inflammatory cytokine IL-8 and two anti-apoptotic genes known to be implicated in CRC, BIRC3 and TNFAIP3. Finally, it promoted the survival of CRC cells and reduced 5-fluorouracil chemosensitivity in vitro. Taken together, our results emphasize the importance of the ALPK1/TIFA pathway in Fusobacterium induced-CRC pathogenesis, and identify the role of ADP-H in this process.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Fusobacterium nucleatum/metabolismo , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Neoplasias Colorretais/patologia , Heptoses/metabolismo , Microambiente Tumoral
9.
Dev Biol ; 368(2): 304-11, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22659081

RESUMO

Several research groups have suggested that the embryonic-abembryonic (Em-Ab) axis in the mouse can be predicted by the first cleavage plane of the early embryo. Currently, it is not known whether this early patterning occurs in cloned embryos produced by nuclear transfer and whether it affects development to term. In this work, the relationship between the first cleavage plane and the Em-Ab axis was determined by the labeling of one blastomere in cloned mouse embryos at the 2-cell stage, followed by ex-vivo tracking until the blastocyst stage. The results demonstrate that approximately half of the cloned blastocysts had an Em-Ab axis perpendicular to the initial cleavage plane of the 2-cell stage. These embryos were classified as "orthogonal" and the remainder as "deviant". Additionally, we report here that cloned embryos were significantly more often orthogonal than their naturally fertilized counterparts and overexpressed Sox2. Orthogonal cloned embryos demonstrated a higher rate of post-implantation embryonic development than deviant embryos, but cloned pups did not all survive. These results reveal that the angular relationship between the Em-Ab axis and the first cleavage plane can influence later development and they support the hypothesis that proper early patterning of mammalian embryos is required after nuclear transfer.


Assuntos
Blastocisto/citologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Animais , Blastocisto/metabolismo , Clonagem de Organismos , Transferência Embrionária , Embrião de Mamíferos/metabolismo , Feminino , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Microscopia Confocal , Proteína Homeobox Nanog , Técnicas de Transferência Nuclear , Fator 3 de Transcrição de Octâmero/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética
10.
Mol Reprod Dev ; 79(7): 461-77, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22573702

RESUMO

Pluripotency can be captured in vitro, providing that the culture environment meets the requirements that avoid differentiation while stimulating self-renewal. From studies in the mouse embryo, two kinds of pluripotent stem cells have been obtained from the early and late epiblast, embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs), representing the naive and primed states, respectively. All attempts to derive convincing ESCs in ungulates have been unsuccessful, although all attempts were based on the assumption that the conditions used to derive mouse ESCs or human ESC could be applied in other species. Pluripotent cells derived in primates, rabbit, and pig strongly indicate that the state of pluripotency of these cells is, in fact, closer to EpiSCs than to ESCs, and thus depend on fibroblast growth factor (FGF) and Activin signaling pathways. Based on this observation, we have tried to derive EpiSC from the epiblast of bovine elongated embryos as well as ESCs from Day-8 blastocysts. We here show that the core transcription factors Oct4/Sox2/Nanog can be used as markers of pluripotency in the bovine since their expression was restricted to the developing epiblast after Day 8, and disappeared following differentiation of both the ESC-like and EpiSC-like cultures. Although FGF and Activin pathways are indeed present and active in the bovine, it is not sufficient/enough to maintain a long-term pluripotency ex vivo, as was reported for mouse and pig EpiSCs.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Camadas Germinativas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Ativinas/metabolismo , Animais , Biomarcadores , Blastocisto/metabolismo , Bovinos , Células Cultivadas , Células-Tronco Embrionárias/citologia , Fatores de Crescimento de Fibroblastos/metabolismo , Camadas Germinativas/citologia , Proteínas de Homeodomínio/biossíntese , Camundongos , Fator 3 de Transcrição de Octâmero/biossíntese , Células-Tronco Pluripotentes/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição SOXB1/biossíntese , Transdução de Sinais
11.
Sci Rep ; 12(1): 13908, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974030

RESUMO

Early mouse development is characterized by structural and epigenetic changes while cells progress towards differentiation. At blastocyst stage, the segregation of the three primordial lineages is accompanied by establishment of differential patterns of DNA methylation and post-translational modifications of histones, such as H3K27me3. Here, we analysed the dynamics of H3K27me3 at pericentromeric heterochromatin (PCH) during early development. We also followed the localization of EZH2 and BEND3, previously shown in ESCs to drive PRC2 to hypomethylated PCH. We show that the location of H3K27me3 at PCH, in addition to H3K9me3, is a defining feature of embryonic cells in vivo. Moreover, it may play an important role in structuring PCH and preserving genomic integrity at a time of globally relaxed chromatin. At peri-implantation stages, while DNA methylation is still low, EZH2 and then H3K27me3, leave PCH in epiblast progenitors at the time of their spatial segregation from primitive endoderm cells, while BEND3 remains there up to implantation. The comparison with stem cells (ESCs and TSCs) reveals that the epigenetic marks (i.e. H3K9me3 and H3K27me3) of PCH are reset during in vitro derivation and only partially restored thereafter. This highlights possible divergences between in vitro and "in embryo" epigenetic regulation regarding constitutive heterochromatin.


Assuntos
Heterocromatina , Histonas , Animais , Blastocisto/metabolismo , Metilação de DNA , Epigênese Genética , Heterocromatina/metabolismo , Histonas/metabolismo , Camundongos
12.
Nat Commun ; 13(1): 3861, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790717

RESUMO

Mammalian pre-implantation embryos accumulate substantial lipids, which are stored in lipid droplets (LDs). Despite the fundamental roles of lipids in many cellular functions, the significance of building-up LDs for the developing embryo remains unclear. Here we report that the accumulation and mobilization of LDs upon implantation are causal in the morphogenesis of the pluripotent epiblast and generation of the pro-amniotic cavity in mouse embryos, a critical step for all subsequent development. We show that the CIDEA protein, found abundantly in adipocytes, enhances lipid storage in blastocysts and pluripotent stem cells by promoting LD enlargement through fusion. The LD-stored lipids are mobilized into lysosomes at the onset of lumenogenesis, but without CIDEA are prematurely degraded by cytosolic lipases. Loss of lipid storage or inactivation of lipophagy leads to the aberrant formation of multiple cavities within disorganised epithelial structures. Thus, our study reveals an unexpected role for LDs in orchestrating tissue remodelling and uncovers underappreciated facets of lipid metabolism in peri-implantation development.


Assuntos
Gotículas Lipídicas , Metabolismo dos Lipídeos , Adipócitos/metabolismo , Animais , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Mamíferos , Camundongos , Morfogênese
13.
Gut Microbes ; 14(1): 2110639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36036242

RESUMO

The commensal bacteria that make up the gut microbiota impact the health of their host on multiple levels. In particular, the interactions taking place between the microbe-associated molecule patterns (MAMPs) and pattern recognition receptors (PRRs), expressed by intestinal epithelial cells (IECs), are crucial for maintaining intestinal homeostasis. While numerous studies showed that TLRs and NLRs are involved in the control of gut homeostasis by commensal bacteria, the role of additional innate immune receptors remains unclear. Here, we seek for novel MAMP-PRR interactions involved in the beneficial effect of the commensal bacterium Akkermansia muciniphila on intestinal homeostasis. We show that A. muciniphila strongly activates NF-κB in IECs by releasing one or more potent activating metabolites into the microenvironment. By using drugs, chemical and gene-editing tools, we found that the released metabolite(s) enter(s) epithelial cells and activate(s) NF-κB via an ALPK1, TIFA and TRAF6-dependent pathway. Furthermore, we show that the released molecule has the biological characteristics of the ALPK1 ligand ADP-heptose. Finally, we show that A. muciniphila induces the expression of the MUC2, BIRC3 and TNFAIP3 genes involved in the maintenance of the intestinal barrier function and that this process is dependent on TIFA. Altogether, our data strongly suggest that the commensal A. muciniphila promotes intestinal homeostasis by activating the ALPK1/TIFA/TRAF6 axis, an innate immune pathway exclusively described so far in the context of Gram-negative bacterial infections.


Assuntos
Microbioma Gastrointestinal , NF-kappa B , Difosfato de Adenosina , Akkermansia , Heptoses , Imunidade Inata , Fator 6 Associado a Receptor de TNF , Verrucomicrobia
14.
Stem Cells ; 28(4): 743-52, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20201062

RESUMO

Mouse embryonic pluripotent stem cells can be obtained from the inner cell mass at the blastocyst stage (embryonic stem cells, ESCs) or from the late epiblast of postimplantation embryos (epiblast stem cells, EpiSCs). During normal development, the transition between these two stages is marked by major epigenetic and transcriptional changes including DNA de novo methylation. These modifications represent an epigenetic mark conserved in ESCs and EpiSCs. Pluripotent ESCs derived from blastocysts generated by nuclear transfer (NT) have been shown to be correctly reprogrammed. However, NT embryos frequently undergo abnormal development. In the present study, we have examined whether pluripotent cells could be derived from the epiblast of postimplantation NT embryos and whether the reprogramming process would affect the epigenetic changes occurring at this stage, which could explain abnormal development of NT embryos. We showed that EpiSCs could be derived with the same efficiency from NT embryos and from their fertilized counterparts. However, gene expression profile analyses showed divergence between fertilized- and nuclear transfer-EpiSCs with a surprising bias in the distribution of the differentially expressed genes, 30% of them being localized on chromosome 11. A majority of these genes were downregulated in NT-EpiSCs and imprinted genes represented a significant fraction of them. Notably, analysis of the epigenetic status of a downregulated imprinted gene in NT-EpiSCs revealed complete methylation of the two alleles. Therefore, EpiSCs derived from NT embryos appear to be incorrectly reprogrammed, indicating that abnormal epigenetic marks are imposed on cells in NT embryos during the transition from early to late epiblast.


Assuntos
Camadas Germinativas/metabolismo , Células-Tronco/metabolismo , Animais , Biomarcadores , Linhagem Celular , Proliferação de Células , Forma Celular , Epigênese Genética , Fertilização in vitro , Perfilação da Expressão Gênica , Camadas Germinativas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Transferência Nuclear , Células-Tronco/citologia
15.
Methods Mol Biol ; 2214: 109-123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32944906

RESUMO

Somatic cell nuclear transfer (SCNT) is a powerful technique, although challenging, to study reprograming into the totipotent state of differentiated nuclei in mammals. This procedure was initially applied in farm animals, then rodents, and more recently in primates. Nuclear transfer of embryonic stem cells is known to be more efficient, but many types of somatic cells have now been successfully reprogramed with this procedure. Moreover, SCNT reprograming is more effective on a per cell basis than induced Pluripotent Stem Cells (iPSC) and provides interesting clues regarding the underlying processes. In this chapter, we describe the protocol of nuclear transfer in mouse that combines cell cycle synchronization of the donor cells, enucleation of metaphase II oocyte and Piezo-driven injection of a donor cell nucleus followed by activation of the reconstructed embryos and nonsurgical transfer into pseudo-pregnant mice. Moreover, this protocol includes two facultative steps to erase the epigenetic "memory" of the donor cells and improve chromatin remodeling by histones modifications targeting.


Assuntos
Técnicas de Cultura Embrionária/métodos , Embrião de Mamíferos/citologia , Técnicas de Transferência Nuclear , Animais , Ciclo Celular , Células Cultivadas , Reprogramação Celular , Embrião de Mamíferos/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/citologia , Oócitos/metabolismo , Gravidez
16.
Front Cell Dev Biol ; 9: 672948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164396

RESUMO

The culture media used throughout the in vitro production (IVP) of bovine embryos remain complex. The serum added to culture media in order to improve embryo development negatively impacts the cryotolerance of blastocysts. Periconceptional prostaglandin E2 (PGE2) signaling is known to exert prosurvival effects on in vitro-generated blastocysts. The purpose of the present study was to evaluate the effects on developmental and cryotolerance performance of a serum-free (SF) IVP system that included defined oocyte culture media supplemented or not with PGE2, versus serum-containing (SC) IVP. RNA-sequencing analysis was used to examine the gene expression of ICM derived under the different IVP conditions. We assessed the degree of cryotolerance of grade-I blastocysts during a three-day post-thaw culture by measuring survival and hatching rates, counting trophectoderm and inner cell mass (ICM) blastomere numbers. We also determined the proportion of ICM cells expressing octamer-binding transcription factor 4 protein (OCT4/POU5F1). We showed that grade-I blastocyst development rates under SF + PGE2 conditions were similar to those obtained under SC conditions, although the cleavage rate remained significantly lower. SC IVP conditions induced changes to ICM gene expression relative to several metabolic processes, catabolic activities, cell death and apoptosis. These alterations were associated with significantly higher levels of ICM cell death at day 7 post-fertilization, and lower survival and hatching rates after thawing. SF IVP conditions supplemented or not with PGE2 induced changes to ICM gene expression related to DNA replication, metabolism and double-strand break repair processes, and were associated with significantly larger ICM cell populations after thawing. SF + PGE2 IVP induced changes to ICM gene expression related to epigenetic regulation and were associated with a significantly higher proportion of ICM cells expressing OCT4. For the first time, our study thus offers a comprehensive analysis of the ICM transcriptome regulated by IVP culture conditions in terms of the cellular changes revealed during culture for three days after thawing.

17.
Dev Biol ; 334(2): 325-34, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19631638

RESUMO

Development after nuclear transfer (NT) is subjected to defects originating from both the epiblast and the trophoblast parts of the conceptus and is always accompanied by placentomegaly at term. Here we have investigated the origin of the reprogramming errors affecting the trophoblast lineage in mouse NT embryos. We show that trophoblast stem (TS) cells can be derived from NT embryos (ntTS cells) and used as an experimental in vitro model of trophoblast proliferation and differentiation. Strikingly, TS derivation is more efficient from NT embryos than from controls and ntTS cells exhibit a growth advantage over control TS cells under self-renewal conditions. While epiblast-produced growth factors Fgf4 and Activin exert a fine-tuned control on the balance between self-renewal and differentiation of control TS cells, ntTS cells exhibit a reduced dependency upon their micro-environment. Since the supply of growth factors is known do decrease at the onset of placental formation in vivo we propose that TS cells in NT embryos continue to self-renew during a longer period of time than in fertilized embryo. The resulting increased pool of progenitors could contribute to the enlarged extra-embryonic region observed in the early trophoblast of in vivo grown mouse NT blastocysts that results in placentomegaly.


Assuntos
Reprogramação Celular , Células-Tronco Embrionárias/citologia , Técnicas de Transferência Nuclear , Trofoblastos/citologia , Ativinas/farmacologia , Animais , Biomarcadores , Blastocisto/citologia , Blastocisto/metabolismo , Caspase 3/análise , Caspase 7/análise , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Células Cultivadas/citologia , Células Clonais/citologia , Técnicas de Cocultura , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/enzimologia , Feminino , Fator 4 de Crescimento de Fibroblastos/farmacologia , Perfilação da Expressão Gênica , Camundongos , Placenta/anormalidades
18.
Nat Commun ; 11(1): 1112, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111830

RESUMO

Clusters of enhancers, referred as to super-enhancers (SEs), control the expression of cell identity genes. The organisation of these clusters, and how they are remodelled upon developmental transitions remain poorly understood. Here, we report the existence of two types of enhancer units within SEs typified by distinctive CpG methylation dynamics in embryonic stem cells (ESCs). We find that these units are either prone for decommissioning or remain constitutively active in epiblast stem cells (EpiSCs), as further established in the peri-implantation epiblast in vivo. Mechanistically, we show a pivotal role for ESRRB in regulating the activity of ESC-specific enhancer units and propose that the developmentally regulated silencing of ESRRB triggers the selective inactivation of these units within SEs. Our study provides insights into the molecular events that follow the loss of ESRRB binding, and offers a mechanism by which the naive pluripotency transcriptional programme can be partially reset upon embryo implantation.


Assuntos
Ilhas de CpG , Metilação de DNA , Elementos Facilitadores Genéticos/genética , Células-Tronco Pluripotentes/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Complexo Mediador/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Ligação Proteica , RNA Polimerase II/metabolismo , Transcrição Gênica
19.
Nat Cell Biol ; 22(7): 767-778, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32601371

RESUMO

Following fertilization in mammals, the gametes are reprogrammed to create a totipotent zygote, a process that involves de novo establishment of chromatin domains. A major feature occurring during preimplantation development is the dramatic remodelling of constitutive heterochromatin, although the functional relevance of this is unknown. Here, we show that heterochromatin establishment relies on the stepwise expression and regulated activity of SUV39H enzymes. Enforcing precocious acquisition of constitutive heterochromatin results in compromised development and epigenetic reprogramming, which demonstrates that heterochromatin remodelling is essential for natural reprogramming at fertilization. We find that de novo H3K9 trimethylation (H3K9me3) in the paternal pronucleus after fertilization is catalysed by SUV39H2 and that pericentromeric RNAs inhibit SUV39H2 activity and reduce H3K9me3. De novo H3K9me3 is initially non-repressive for gene expression, but instead bookmarks promoters for compaction. Overall, we uncover the functional importance for the restricted transmission of constitutive heterochromatin during reprogramming and a non-repressive role for H3K9me3.


Assuntos
Centrômero/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Heterocromatina/metabolismo , Histonas/metabolismo , RNA/metabolismo , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Epigênese Genética , Feminino , Heterocromatina/genética , Histonas/genética , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , RNA/genética
20.
BMC Dev Biol ; 9: 11, 2009 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-19210795

RESUMO

BACKGROUND: Genome reprogramming in early mouse embryos is associated with nuclear reorganization and particular features such as the peculiar distribution of centromeric and pericentric heterochromatin during the first developmental stage. This zygote-specific heterochromatin organization could be observed both in maternal and paternal pronuclei after natural fertilization as well as in embryonic stem (ES) cell nuclei after nuclear transfer suggesting that this particular type of nuclear organization was essential for embryonic reprogramming and subsequent development. RESULTS: Here, we show that remodeling into a zygotic-like organization also occurs after somatic cell nuclear transfer (SCNT), supporting the hypothesis that reorganization of constitutive heterochromatin occurs regardless of the source and differentiation state of the starting material. However, abnormal nuclear remodeling was frequently observed after SCNT, in association with low developmental efficiency. When transient treatment with the histone deacetylase inhibitor trichostatin A (TSA) was tested, we observed improved nuclear remodeling in 1-cell SCNT embryos that correlated with improved rates of embryonic development at subsequent stages. CONCLUSION: Together, the results suggest that proper organization of constitutive heterochromatin in early embryos is involved in the initial developmental steps and might have long term consequences, especially in cloning procedures.


Assuntos
Montagem e Desmontagem da Cromatina , Desenvolvimento Embrionário/efeitos dos fármacos , Heterocromatina/metabolismo , Ácidos Hidroxâmicos/farmacologia , Animais , Ciclo Celular , Embrião de Mamíferos/metabolismo , Camundongos , Técnicas de Transferência Nuclear
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa