Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 102: 179-194, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35217174

RESUMO

Living in isolation is considered an emerging societal problem that negatively affects the physical wellbeing of its sufferers in ways that we are just starting to appreciate. This study investigates the immunomodulatory effects of social isolation in mice, utilising a two-week program of sole cage occupancy followed by the testing of immune-inflammatory resilience to bacterial sepsis. Our results revealed that mice housed in social isolation showed an increased ability to clear bacterial infection compared to control socially housed animals. These effects were associated with specific changes in whole blood gene expression profile and an increased production of classical pro-inflammatory cytokines. Interestingly, equipping socially isolated mice with artificial nests as a substitute for their natural huddling behaviour reversed the increased resistance to bacterial sepsis. Together these results suggest that the control of body temperature through social housing and huddling behaviour are important factors in the regulation of the host immune response to infection in mice and might provide another example of the many ways by which living conditions influence immunity.


Assuntos
Sepse , Isolamento Social , Animais , Imunidade , Camundongos , Temperatura
2.
Immunology ; 143(3): 311-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24943894

RESUMO

While the concept of a palpable relationship between our mental and physical well-being is certainly not new, it is only in the light of modern scientific research that we have begun to realize how deeply connected our emotional and immune states may be. We begin this review with a series of studies demonstrating how four fundamental emotional responses: anger, anxiety, mirth and relaxation are able modulate cytokine production and cellular responses to a variety of immune stimuli. These modulations are shown to be either detrimental or beneficial to a patient's health dependent on the context and duration of the emotion. We also discuss the reverse, highlighting research demonstrating how the loss of key immune cells such as T lymphocytes in clinical and animal studies can negatively impact both emotional well-being and cognition. Additionally, to give a more complete picture of the manifold pathways that link emotion and the immune system, we give a brief overview of the influence the digestive system has upon mental and immunological health. Finally, throughout this review we attempt to highlight the therapeutic potential of this burgeoning field of research in both the diagnosis and treatment of immune and disorders. As well as identifying some of the key obstacles the field must address in order to put this potential into practice.


Assuntos
Emoções , Sistema Imunitário/fisiologia , Animais , Cognição , Depressão/imunologia , Sistema Digestório , Humanos , Imunidade/fisiologia , Leucócitos/fisiologia , Linfócitos/fisiologia
3.
JCI Insight ; 2(7): e90723, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28405616

RESUMO

Living in a mentally and physically stimulating environment has been suggested to have a beneficial effect on the immune response. This study investigates these effects, utilizing a 2-week program of environmental enrichment (EE) and 2 models of acute inflammation: zymosan-induced peritonitis (ZIP) and the cecal ligation and puncture (CLP) model of sepsis. Our results revealed that following exposure to EE, mice possessed a significantly higher circulating neutrophil to lymphocyte ratio compared with control animals. When subject to ZIP, EE animals exhibit enhanced neutrophil and macrophage influx into their peritoneal cavity. Corresponding results were found in CLP, where we observed an improved capacity for enriched animals to clear systemic microbial infection. Ex vivo investigation of leukocyte activity also revealed that macrophages from EE mice presented an enhanced phagocytic capacity. Supporting these findings, microarray analysis of EE animals revealed the increased expression of immunomodulatory genes associated with a heightened and immunoprotective status. Taken together, these results provide potentially novel mechanisms by which EE influences the development and dynamics of the immune response.


Assuntos
Meio Ambiente , Inflamação/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Peritonite/imunologia , Sepse/imunologia , Animais , Ceco/lesões , Modelos Animais de Doenças , Ligadura , Masculino , Camundongos , Análise em Microsséries , Peritonite/induzido quimicamente , Fagocitose , Sepse/etiologia , Zimosan
4.
Front Immunol ; 7: 381, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27746779

RESUMO

T cells are known to be plastic and to change their phenotype according to the cellular and biochemical milieu they are embedded in. In this study, we transposed this concept at a macroscopic level assessing whether changes in the environmental housing conditions of C57/BL6 mice would influence the phenotype and function of T cells. Our study shows that exposure to 2 weeks in an enriched environment (EE) does not impact the T cell repertoire in vivo and causes no changes in the early TCR-driven activation events of these cells. Surprisingly, however, T cells from enriched mice showed a unique T helper effector cell phenotype upon differentiation in vitro. This was featured by a significant reduction in their ability to produce IFN-γ and by an increased release of IL-10 and IL-17. Microarray analysis of these cells also revealed a unique gene fingerprint with key signaling pathways involved in autoimmunity being modulated. Together, our results provide first evidence for a specific effect of EE on T cell differentiation and its associated changes in gene expression profile. In addition, our study sheds new light on the possible mechanisms by which changes in environmental factors can significantly influence the immune response of the host and favor the resolution of the inflammatory response.

5.
Sci Rep ; 5: 10913, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26046935

RESUMO

Recent clinical evidence suggests that the therapeutic effect of massage involves the immune system and that this can be exploited as an adjunct therapy together with standard drug-based approaches. In this study, we investigated the mechanisms behind these effects exploring the immunomodulatory function of stroking as a surrogate of massage-like therapy in mice. C57/BL6 mice were stroked daily for 8 days either with a soft brush or directly with a gloved hand and then analysed for differences in their immune repertoire compared to control non-stroked mice. Our results show that hand- but not brush-stroked mice demonstrated a significant increase in thymic and splenic T cell number (p < 0.05; p < 0.01). These effects were not associated with significant changes in CD4/CD8 lineage commitment or activation profile. The boosting effects on T cell repertoire of massage-like therapy were associated with a decreased noradrenergic innervation of lymphoid organs and counteracted the immunosuppressive effect of hydrocortisone in vivo. Together our results in mice support the hypothesis that massage-like therapies might be of therapeutic value in the treatment of immunodeficiencies and related disorders and suggest a reduction of the inhibitory noradrenergic tone in lymphoid organs as one of the possible explanations for their immunomodulatory function.


Assuntos
Imunomodulação , Massagem , Linfócitos T/fisiologia , Animais , Ansiedade , Hidrocortisona/fisiologia , Imunidade Celular , Ativação Linfocitária , Masculino , Camundongos Endogâmicos C57BL , Baço/fisiologia , Timo/citologia , Timo/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa