Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 198: 114257, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479564

RESUMO

The use of plants such as giant hogweed as raw materials for the manufacture of dosage forms has been little explored. In this study, we utilized furanocoumarins from the Heracleum sosnowskyi plant to create an experimental emulsion dosage form (EmFHS). The EmFHS was finely dispersed (481.8 nm ± 71.1 nm), shelf-stable, and contained predominantly 8-methoxypsoralen at a concentration of 1 mg/ml. Phototoxicity analysis of EmFHS for THP-1 cells under UV (365 nm) irradiation showed an IC50 of 19.1 µg/ml (24 h) and 6.3 µg/ml (48 h). In relation to spheroids (L929), EmFHS exhibited a phototoxic effect in the concentration range of 31.25-125 µg/ml8-MOP. A full phototoxic effect was observed 48 h after UV irradiation. The phototoxic effect of EmFHS in vitro was dose-dependent and comparable to the effect of emulsion synthetic 8-methoxypsoralen and chlorin e6 solution. EmFHS cytotoxicity was caused solely by UV radiation, and toxicity in the dark was minimal. EmFHS, administered at a dose of 3 mg/kg8-MOP, was found to be safe after a single intravenous administration to rats. It had a photosensitizing effect in the form of local photodermatitis when exposed to UV irradiation at a dose of 44 J/cm2. The biokinetics of emulsion furanocoumarins showed that the phototoxic effect of EmFHS is due to the high penetration ability of the emulsion into cells of spheroids. At the same time, it has a low degree of cumulation when administered intravenously. The obtained data suggest that EmFHS may be a promising treatment for PUVA therapy of various dermatological diseases. Additionally, the plant Heracleum sosnowskyi shows potential as a basis for creating new dosage forms with phototherapeutic effects.


Assuntos
Furocumarinas , Heracleum , Ratos , Animais , Fármacos Fotossensibilizantes , Metoxaleno , Emulsões
2.
Chem Biol Interact ; 357: 109880, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35271822

RESUMO

Sosnovsky's hogweed, Heracleum sosnowskyi has a high photosensitizing ability. Although Sosnovsky's hogweed is known as a poisonous plant, its chemical composition and phototoxicity are poorly studied. We analyzed the chemical composition of the Sosnovsky's hogweed juice that grew in natural conditions. It was found that the content of 8-methoxypsoralen in the juice is 1332.7 mg/L, and that of 5-methoxypsoralen is 34.2 mg/L. We have developed and analyzed liposomes containing furanocoumarins of Sosnovsky's hogweed juice and studied their photocytotoxicity in L929 mouse fibroblast cell culture. It was found that liposomes containing furanocoumarins of Sosnovsky's hogweed juice are more toxic for L929 cells in comparison with liposomal forms of pure substances 8-methoxypsoralen and 5-methoxypsoralen. It was found that when exposed to UV radiation at 365 nm at a dose of 22.2 J/cm2, the liposomal form of furanocoumarins Sosnovsky's hogweed is 3 times more toxic to L929 cells than in the dark. It was found that the photocytotoxic effect of liposomal furanocoumarins Sosnovsky's hogweed is a strongly stimulation of apoptosis.The data obtained suggest that the raw material of Sosnovsky's hogweed claims to be a source of furanocoumarins, and the liposomal form, given the hydrophobic properties of furanocoumarins, is very suitable for creating a phototherapeutic drug.


Assuntos
Furocumarinas , Heracleum , Animais , Furocumarinas/toxicidade , Heracleum/química , Lipossomos , Metoxaleno , Camundongos , Raios Ultravioleta
3.
Colloids Surf B Biointerfaces ; 199: 111548, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33421925

RESUMO

Magnetic hyperthermia (MH) is a perspective tool to treat the tumor while the magnetic material is delivered. The key problems in MH development is to ensure an effective local heating within cancer cell without overheating other cells. In order to do that one has to reach substantial local accumulation of magnetic nanoparticles (MNPs) and/or magnetically sensitive objects with advanced heat properties. Absorbing heat energy for destroying tumor cells can be generated only if there is sufficient amount of locally placed MNPs. In this work, we propose polyelectrolyte microcapsules modified with iron oxide nanoparticles as an approach to tie magnetic materials in high concentration locally. These microcapsules (about 3 microns in diameter) can be readily internalized by various cells. The human fibroblasts uptake of the microcapsules and cytotoxic effect upon the influence of alternating magnetic field (AMF) while magnetic capsules are inside the cells is under study in this work. The cytotoxicity of the magnetic microcapsules was compared with the cytotoxicity of the MNPs while free in the solution to evaluate the effect of bounding MNPs. A cytotoxic effect on cells was found in the case of preliminary incubation of fibroblasts with capsules while the AMF is applied. In the case of MNPs in an equivalent dose per mass of magnetic material, there was no cytotoxic effect noticed after the treatment with the field. It is noteworthy that during the treatment of cells with the AMF, the increase in temperature of the incubation medium was not registered. The morphological changes on fibroblasts were consistent with the data of the viability assessment. Thus, the synthesized capsules are shown as a means for local enhancement of magnetic hyperthermia in the treatment of tumor diseases.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Cápsulas , Humanos , Campos Magnéticos , Polímeros
4.
Mater Sci Eng C Mater Biol Appl ; 110: 110664, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204092

RESUMO

Photosensitive polymeric three-dimensional microstructured film (PTMF) is a new type of patterned polymeric films functionalized with an array of sealed hollow 3D containers. The microstructured system with enclosed chemicals provides a tool for the even distribution of biologically active substances on a given surface that can be deposited on medical implants or used as a cells substrate. In this work, we proposed a way for photothermally activating and releasing encapsulated substances at picogram amounts from the PTMF surface in different environments using laser radiation delivered with a multimode optical fiber. The photosensitive PTMFs were prepared by the layer-by-layer (LbL) assembly from alternatively charged polyelectrolytes followed by covering with a layer of hydrophobic polylactic acid (PLA) and a layer of gold nanoparticles (AuNPs). Moreover, the typical photothermal cargo release amounts were determined on the surface of the PTMF for a range of laser powers delivered to films placed in the air, deionized (DI) water, and 1% agarose gel. The agarose gel was used as a soft tissue model for developing a technique for the laser activation of PTMFs deep in tissues using optical waveguides. The number of PTMF chambers activated by a near-infrared (NIR) laser beam was evaluated as the function of optical parameters.


Assuntos
Liberação Controlada de Fármacos , Lasers , Fibras Ópticas , Polímeros/química , Raios Infravermelhos , Polieletrólitos/química , Eletricidade Estática
5.
Polymers (Basel) ; 11(6)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242626

RESUMO

Although new drug delivery systems have been intensely developed in the past decade, no significant increase in the efficiency of drug delivery by nanostructure carriers has been achieved. The reasons are the lack of information about acute toxicity, the influence of the submicron size of the carrier and difficulties with the study of biodistribution in vivo. Here we propose, for the first time in vivo, new nanocomposite submicron carriers made of bovine serum albumin (BSA) and tannic acid (TA) and containing magnetite nanoparticles with sufficient content for navigation in a magnetic field gradient on mice. We examined the efficacy of these submicron carriers as a delivery vehicle in combination with magnetite nanoparticles which were systemically administered intravenously. In addition, the systemic toxicity of this carrier for intravenous administration was explicitly studied. The results showed that (BSA/TA) carriers in the given doses were hemocompatible and didn't cause any adverse effect on the respiratory system, kidney or liver functions. A combination of gradient-magnetic-field controllable biodistribution of submicron carriers with fluorescence tomography/MRI imaging in vivo provides a new opportunity to improve drug delivery efficiency.

6.
Polymers (Basel) ; 11(5)2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31130638

RESUMO

This study looked into the synthesis and study of Dextrane Sulfate-Doxorubicin Nanoparticles (DS-Dox NP) that are sensitive to amylase and show anticoagulant properties. The particles were obtained by the method of solvent replacement. They had a size of 305 ± 58 nm, with a mass ratio of DS:Dox = 3.3:1. On heating to 37 °C, the release of Dox from the particles was equal to 24.2% of the drug contained. In the presence of amylase, this ratio had increased to 42.1%. The study of the biological activity of the particles included an assessment of the cytotoxicity and the effect on hemostasis and antitumor activity. In a study of cytotoxicity on the L929 cell culture, it was found that the synthesized particles had less toxicity, compared to free doxorubicin. However, in the presence of amylase, their cytotoxicity was higher than the traditional forms of the drug. In a study of the effect of DS-Dox NP on hemostasis, it was found that the particles had a heparin-like anticoagulant effect. Antitumor activity was studied on the model of ascitic Zaidel hepatoma in rats. The frequency of complete cure in animals treated with the DS-Dox nanoparticles was higher, compared to animals receiving the traditional form of the drug.

7.
ACS Appl Mater Interfaces ; 10(44): 37855-37864, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30299076

RESUMO

This paper presents the synthesis of highly biocompatible and biodegradable poly(lactide- co-glycolide) (PLGA) microchamber arrays sensitive to low-intensity therapeutic ultrasound (1 MHz, 1-2 W, 1 min). A reliable method was elaborated that allowed the microchambers to be uniformly filled with epinephrine hydrochloride (EH), with the possibility of varying the cargo amount. The maximum load of EH was 4.5 µg per array of 5 mm × 5 mm (about 24 pg of EH per single microchamber). A gradual, spontaneous drug release was observed to start on the first day, which is especially important in the treatment of acute patients. Ultrasound triggered a sudden substantial release of EH from the films. In vivo real-time studies using a laser speckle contrast imaging system demonstrated changes in the hemodynamic parameters as a consequence of EH release under ultrasound exposure. We recorded a decrease in blood flow as a vascular response to EH release from a PLGA microchamber array implanted subcutaneously in a mouse. This response was immediate and delayed (1 and 2 days after the implantation of the array). The PLGA microchamber array is a new, promising drug depot implantable system that is sensitive to external stimuli.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Epinefrina/administração & dosagem , Animais , Materiais Biocompatíveis/química , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/farmacologia , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Epinefrina/química , Humanos , Ácido Láctico/química , Camundongos , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa