Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Alzheimers Dement ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291737

RESUMO

INTRODUCTION: MicroRNAs (miRNAs) play important roles in gene expression regulation and Alzheimer's disease (AD) pathogenesis. METHODS: We investigated the association between baseline plasma miRNAs and central AD biomarkers from the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 803): amyloid, tau, and neurodegeneration (A/T/N). Differentially expressed miRNAs and their targets were identified, followed by pathway enrichment analysis. Machine learning approaches were applied to investigate the role of miRNAs as blood biomarkers. RESULTS: We identified nine, two, and eight miRNAs significantly associated with A/T/N positivity, respectively. We identified 271 genes targeted by amyloid-related miRNAs with estrogen signaling receptor-mediated signaling among the enriched pathways. Additionally, 220 genes targeted by neurodegeneration-related miRNAs showed enrichment in pathways including the insulin growth factor 1 pathway. The classification performance of demographic information for A/T/N positivity was increased up to 9% with the inclusion of miRNAs. DISCUSSION: Plasma miRNAs were associated with central A/T/N biomarkers, highlighting their potential as blood biomarkers. HIGHLIGHTS: We performed association analysis of microRNAs (miRNAs) with amyloid/tau/neurodegeneration (A/T/N) biomarker positivity. We identified dysregulated miRNAs for A/T/N biomarker positivity. We identified Alzheimer's disease biomarker-specific/common pathways related to miRNAs. miRNAs improved the classification for A/T/N positivity by up to 9%. Our study highlights the potential of miRNAs as blood biomarkers.

2.
Alzheimers Dement ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291752

RESUMO

INTRODUCTION: MicroRNAs are short non-coding RNAs that control proteostasis at the systems level and are emerging as potential prognostic and diagnostic biomarkers for Alzheimer's disease (AD). METHODS: We performed small RNA sequencing on plasma samples from 847 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. RESULTS: We identified microRNA signatures that correlate with AD diagnoses and help predict the conversion from mild cognitive impairment (MCI) to AD. DISCUSSION: Our data demonstrate that plasma microRNA signatures can be used to not only diagnose MCI, but also, critically, predict the conversion from MCI to AD. Moreover, combined with neuropsychological testing, plasma microRNAome evaluation helps predict MCI to AD conversion. These findings are of considerable public interest because they provide a path toward reducing indiscriminate utilization of costly and invasive testing by defining the at-risk segment of the aging population. HIGHLIGHTS: We provide the first analysis of the plasma microRNAome for the ADNI study. The levels of several microRNAs can be used as biomarkers for the prediction of conversion from MCI to AD. Adding the evaluation of plasma microRNA levels to neuropsychological testing in a clinical setting increases the accuracy of MCI to AD conversion prediction.

3.
BMC Cancer ; 22(1): 139, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120467

RESUMO

BACKGROUND: Gastric cancer is a heterogeneous disease with poorly understood genetic and microenvironmental factors. Mutations in collagen genes are associated with genetic diseases that compromise tissue integrity, but their role in tumor progression has not been extensively reported. Aberrant collagen expression has been long associated with malignant tumor growth, invasion, chemoresistance, and patient outcomes. We hypothesized that somatic mutations in collagens could functionally alter the tumor extracellular matrix. METHODS: We used publicly available datasets including The Tumor Cancer Genome Atlas (TCGA) to interrogate somatic mutations in collagens in stomach adenocarcinomas. To demonstrate that collagens were significantly mutated above background mutation rates, we used a moderated Kolmogorov-Smirnov test along with combination analysis with a bootstrap approach to define the background accounting for mutation rates. Association between mutations and clinicopathological features was evaluated by Fisher or chi-squared tests. Association with overall survival was assessed by Kaplan-Meier and the Cox-Proportional Hazards Model. Gene Set Enrichment Analysis was used to interrogate pathways. Immunohistochemistry and in situ hybridization tested expression of COL7A1 in stomach tumors. RESULTS: In stomach adenocarcinomas, we identified individual collagen genes and sets of collagen genes harboring somatic mutations at a high frequency compared to background in both microsatellite stable, and microsatellite instable tumors in TCGA. Many of the missense mutations resemble the same types of loss of function mutations in collagenopathies that disrupt tissue formation and destabilize cells providing guidance to interpret the somatic mutations. We identified combinations of somatic mutations in collagens associated with overall survival, with a distinctive tumor microenvironment marked by lower matrisome expression and immune cell signatures. Truncation mutations were strongly associated with improved outcomes suggesting that loss of expression of secreted collagens impact tumor progression and treatment response. Germline collagenopathy variants guided interpretation of impactful somatic mutations on tumors. CONCLUSIONS: These observations highlight that many collagens, expressed in non-physiologically relevant conditions in tumors, harbor impactful somatic mutations in tumors, suggesting new approaches for classification and therapy development in stomach cancer. In sum, these findings demonstrate how classification of tumors by collagen mutations identified strong links between specific genotypes and the tumor environment.


Assuntos
Adenocarcinoma/genética , Colágeno Tipo VII/genética , Colágeno/genética , Neoplasias Gástricas/genética , Microambiente Tumoral/genética , Adenocarcinoma/mortalidade , Biologia Computacional , Genótipo , Humanos , Estimativa de Kaplan-Meier , Mutação , Taxa de Mutação , Modelos de Riscos Proporcionais , Neoplasias Gástricas/mortalidade
4.
Am J Respir Cell Mol Biol ; 62(5): 577-587, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31721618

RESUMO

Mesenchymal stem cell extracellular vesicles attenuate pulmonary hypertension, but their ability to reverse established disease in larger animal models and the duration and mechanism(s) of their effect are unknown. We sought to determine the efficacy and mechanism of mesenchymal stem cells' extracellular vesicles in attenuating pulmonary hypertension in rats with Sugen/hypoxia-induced pulmonary hypertension. Male rats were treated with mesenchymal stem cell extracellular vesicles or an equal volume of saline vehicle by tail vein injection before or after subcutaneous injection of Sugen 5416 and exposure to 3 weeks of hypoxia. Pulmonary hypertension was assessed by right ventricular systolic pressure, right ventricular weight to left ventricle + septum weight, and muscularization of peripheral pulmonary vessels. Immunohistochemistry was used to measure macrophage activation state and recruitment to lung. Mesenchymal stem cell extracellular vesicles injected before or after induction of pulmonary hypertension normalized right ventricular pressure and reduced right ventricular hypertrophy and muscularization of peripheral pulmonary vessels. The effect was consistent over a range of doses and dosing intervals and was associated with lower numbers of lung macrophages, a higher ratio of alternatively to classically activated macrophages (M2/M1 = 2.00 ± 0.14 vs. 1.09 ± 0.11; P < 0.01), and increased numbers of peripheral blood vessels (11.8 ± 0.66 vs. 6.9 ± 0.57 vessels per field; P < 0.001). Mesenchymal stem cell extracellular vesicles are effective at preventing and reversing pulmonary hypertension in Sugen/hypoxia pulmonary hypertension and may offer a new approach for the treatment of pulmonary arterial hypertension.


Assuntos
Vesículas Extracelulares/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Hipóxia/complicações , Indóis/efeitos adversos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Pirróis/efeitos adversos , Animais , Fibroblastos/metabolismo , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Ativação de Macrófagos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso/patologia , Neovascularização Fisiológica , Ratos Sprague-Dawley , Remodelação Vascular , Fator de von Willebrand/metabolismo
5.
BMC Cancer ; 19(1): 1036, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675929

RESUMO

BACKGROUND: The breast cancer microenvironment contributes to tumor progression and response to chemotherapy. Previously, we reported that increased stromal Type X collagen α1 (ColXα1) and low TILs correlated with poor pathologic response to neoadjuvant therapy in estrogen receptor and HER2-positive (ER+/HER2+) breast cancer. Here, we investigate the relationship of ColXα1 and long-term outcome of ER+/HER2+ breast cancer patients in an adjuvant setting. METHODS: A total of 164 cases with at least 5-year follow-up were included. Immunohistochemistry for ColXα1 was performed on whole tumor sections. Associations between ColXα1expression, clinical pathological features, and outcomes were analyzed. RESULTS: ColXα1 expression was directly proportional to the amount of tumor associated stroma (p = 0.024) and inversely proportional to TILs. Increased ColXα1 was significantly associated with shorter disease free survival and overall survival by univariate analysis. In multivariate analysis, OS was lower in ColXα1 expressing (HR = 2.1; 95% CI = 1.2-3.9) tumors of older patients (> = 58 years) (HR = 5.3; 95% CI = 1.7-17) with higher stage (HR = 2.6; 95% CI = 1.3-5.2). Similarly, DFS was lower in ColXα1 expressing (HR = 1.8; 95% CI = 1.6-5.7) tumors of older patients (HR = 3.2; 95% CI = 1.3-7.8) with higher stage (HR = 2.7; 95% CI = 1.6-5.7) and low TILs. In low PR+ tumors, higher ColXα1 expression was associated with poorer prognosis. CONCLUSION: ColXα1 expression is associated with poor disease free survival and overall survival in ER+/HER2+ breast cancer. This study provides further support for the prognostic utility of ColXα1 as a breast cancer associated stromal factor that predicts response to chemotherapy.


Assuntos
Neoplasias da Mama/metabolismo , Colágeno Tipo X/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/mortalidade , Quimioterapia Adjuvante , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Mutação/genética , Prognóstico , Receptor ErbB-2/genética , Receptores de Estrogênio/genética , Estudos Retrospectivos , Microambiente Tumoral
6.
PLoS Genet ; 12(6): e1006128, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27341508

RESUMO

TAF4b is a gonadal-enriched subunit of the general transcription factor TFIID that is implicated in promoting healthy ovarian aging and female fertility in mice and humans. To further explore the potential mechanism of TAF4b in promoting ovarian follicle development, we analyzed global gene expression at multiple time points in the human fetal ovary. This computational analysis revealed coordinate expression of human TAF4B and critical regulators and effectors of meiosis I including SYCP3, YBX2, STAG3, and DAZL. To address the functional relevance of this analysis, we turned to the embryonic Taf4b-deficient mouse ovary where, for the first time, we demonstrate, severe deficits in prophase I progression as well as asynapsis in Taf4b-deficient oocytes. Accordingly, TAF4b occupies the proximal promoters of many essential meiosis and oogenesis regulators, including Stra8, Dazl, Figla, and Nobox, and is required for their proper expression. These data reveal a novel TAF4b function in regulating a meiotic gene expression program in early mouse oogenesis, and support the existence of a highly conserved TAF4b-dependent gene regulatory network promoting early oocyte development in both mice and women.


Assuntos
Meiose/genética , Oócitos/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Animais , Feminino , Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , Masculino , Camundongos , Oogênese/genética , Ovário/metabolismo , Regiões Promotoras Genéticas/genética
7.
Mod Pathol ; 30(1): 123-133, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27687006

RESUMO

Fatty acid-binding protein 1 (FABP1) is an intracellular protein responsible for the transportation of long chain fatty acids. Aside from its functions in lipid metabolism and cellular differentiation, FABP1 also plays a role in inflammation through its interaction with peroxisome proliferator-activated receptors (PPARs). Previously, we compared expression of colonic epithelium genes in a subset of microsatellite instable (MSI) colorectal carcinomas (medullary carcinomas) to normal colonic mucosa and found that FABP1 expression was markedly decreased in the tumors. Further analysis of RNA expression in the colorectal subtypes and The Cancer Genome Atlas data set found that FABP1 expression is decreased in the CMS1 subset of colorectal carcinomas, which is characterized by microsatellite instability. As MSI colorectal carcinomas are known for their robust immune response, we then aimed to link FABP1 to the immune microenvironment of MSI carcinomas. To confirm the gene expression results, we performed immunohistochemical analysis of a cohort of colorectal carcinomas. FABP1 was preferentially lost in MSI carcinomas (123/133, 93%) compared with microsatellite stable carcinomas (240/562, 43%, P<0.0001). In addition, higher numbers of tumor-infiltrating lymphocytes were present in tumors with loss of FABP1 (P<0.0001). Decreased expression of the fatty acid storage and glucose regulator, PPARγ, was associated with the loss of FABP1 (P<0.0001). Colorectal cancer cell lines treated with interferon γ exhibited decreased expression of FABP1. FABP1 expression was partially recovered with the treatment of the cell lines with rosiglitazone, a PPARγ agonist. This study demonstrated that the loss of FABP1 expression is associated with MSI carcinomas and that interferon γ stimulation plays a role in this process via its interaction with PPARγ.


Assuntos
Neoplasias Colorretais/genética , Proteínas de Ligação a Ácido Graxo/genética , Regulação Neoplásica da Expressão Gênica , Interferon gama/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Interferon gama/farmacologia , Instabilidade de Microssatélites , PPAR gama/agonistas , Rosiglitazona , Tiazolidinedionas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia
8.
Mod Pathol ; 29(5): 528-41, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26965581

RESUMO

Medullary carcinoma of the colon is a unique histologic subtype of microsatellite unstable colorectal carcinoma but little is known regarding its tumor-immunoregulatory microenvironment. The aims of this study were to characterize the immune environment of medullary carcinoma and compare it with other microsatellite unstable and microsatellite stable colorectal carcinomas. An initial gene expression microarray analysis of six cases of medullary carcinoma was used to detect potentially differentially expressed genes. We extended this analysis utilizing genomic data from the Cancer Genome Atlas to compare eight cases of medullary carcinoma with other microsatellite unstable and stable carcinomas. Finally, we evaluated expression of key immune pathway proteins and lymphocyte subsets via immunohistochemistry of a large group of medullary carcinomas (n=105) and compared these findings with three other groups: poorly differentiated, microsatellite unstable well-differentiated and microsatellite stable well-differentiated carcinomas. Microarray and the Cancer Genome Atlas data analysis identified significant upregulation of several immunoregulatory genes induced by IFNγ including IDO-1, WARS (tRNA(trp)), GBP1, GBP4, GBP5, PDCD1 (PD-1), and CD274 (PD-L1) in medullary carcinoma compared with other microsatellite unstable and microsatellite stable tumors. By immunohistochemistry, IDO-1 was expressed in 64% of medullary carcinomas compared with 19% (9/47) of poorly differentiated carcinomas, 14% (3/22) of microsatellite unstable, and 7% (2/30) of the microsatellite stable well-differentiated carcinomas (P<0.0001). tRNA(trp) was overexpressed in 81% (84/104) of medullary carcinomas, 19% (9/47) of poorly differentiated, 32% (7/22) of microsatellite unstable, and 3% (1/30) of microsatellite stable well-differentiated carcinomas (P<0.0001). Medullary carcinoma had higher mean CD8+ and PD-L1+ tumor-infiltrating lymphocytes compared with all other groups (P<0.0001). This study demonstrates overexpression of several immunoregulatory genes in microsatellite unstable colorectal carcinomas and that expression of these genes and proteins is more prevalent in the medullary carcinoma subtype, which may be of use both diagnostically and therapeutically.


Assuntos
Carcinoma Medular/genética , Carcinoma Medular/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Microambiente Tumoral/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Medular/imunologia , Neoplasias do Colo/imunologia , Feminino , Perfilação da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/patologia , Masculino , Pessoa de Meia-Idade , Transcriptoma
9.
BMC Cancer ; 16: 274, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27090210

RESUMO

BACKGROUND: The influence of the tumor microenvironment and tumor-stromal interactions on the heterogeneity of response within breast cancer subtypes have just begun to be explored. This study focuses on patients with estrogen receptor-positive/human epidermal growth factor receptor 2-positive (ER+/HER2+) breast cancer receiving neoadjuvant chemotherapy and HER2-targeted therapy (NAC+H), and was designed to identify novel predictive biomarkers by combining gene expression analysis and immunohistochemistry with pathologic response. METHODS: We performed gene expression profiling on pre-NAC+H tumor samples from responding (no or minimal residual disease at surgery) and non-responding patients. Gene set enrichment analysis identified potentially relevant pathways, and immunohistochemical staining of pre-treatment biopsies was used to measure protein levels of those pathways, which were correlated with pathologic response in both univariate and multivariate analysis. RESULTS: Increased expression of genes encoding for stromal collagens, including Col10A1, and reduced expression of immune-associated genes, reflecting lower levels of total tumor-infiltrating lymphocytes (TILs), were strongly associated with poor pathologic response. Lower TILs in tumor biopsies correlated with reduced likelihood of achieving an optimal pathologic response, but increased expression of the Col10A1 gene product, colXα1, had greater predictive value than stromal abundance for poor response (OR = 18.9, p = 0.003), and the combination of increased colXα1 expression and low TILs was significantly associated with poor response in multivariate analysis. ROC analysis suggests strong specificity and sensitivity for this combination in predicting treatment response. CONCLUSIONS: Increased expression of stromal colXα1 and low TILs correlate with poor pathologic response in ER+/HER2+ breast tumors. Further studies are needed to confirm their predictive value and impact on long-term outcomes, and to determine whether this collagen exerts a protective effect on the cancer cells or simply reflects other factors within the tumor microenvironment.


Assuntos
Neoplasias da Mama/patologia , Colágeno Tipo X/isolamento & purificação , Linfócitos do Interstício Tumoral/patologia , Receptor ErbB-2/genética , Receptores de Estrogênio/genética , Adulto , Idoso , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Colágeno Tipo X/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Prognóstico , Resultado do Tratamento , Microambiente Tumoral/genética
10.
Nat Genet ; 38(11): 1289-97, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17013392

RESUMO

The estrogen receptor is the master transcriptional regulator of breast cancer phenotype and the archetype of a molecular therapeutic target. We mapped all estrogen receptor and RNA polymerase II binding sites on a genome-wide scale, identifying the authentic cis binding sites and target genes, in breast cancer cells. Combining this unique resource with gene expression data demonstrates distinct temporal mechanisms of estrogen-mediated gene regulation, particularly in the case of estrogen-suppressed genes. Furthermore, this resource has allowed the identification of cis-regulatory sites in previously unexplored regions of the genome and the cooperating transcription factors underlying estrogen signaling in breast cancer.


Assuntos
Genoma Humano , Receptores de Estrogênio/metabolismo , Elementos de Resposta , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/genética , Neoplasias da Mama/genética , Células Cultivadas , Mapeamento Cromossômico/métodos , Sequência Conservada , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Análise em Microsséries/métodos , Proteínas Nucleares/metabolismo , Proteína 1 de Interação com Receptor Nuclear , Elementos de Resposta/fisiologia , Fatores de Transcrição/fisiologia , Sítio de Iniciação de Transcrição
11.
Gynecol Oncol ; 135(2): 333-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25134999

RESUMO

OBJECTIVE: Determine mechanisms responsible for enhanced statin efficacy in a novel statin combination we name STOX (STatin-OXysterol). METHODS: Ovarian cancer cell lines were treated with combinations of statins and oxysterols. Cell viability was determined by a modified MTT assay. Apoptosis was evaluated by immunoblotting of PARP and DAPI-mediated visualization of apoptotic nuclei. STOX effects on the expression of genes of the mevalonate pathway were assessed by real-time qPCR and immunoblotting. siRNA-mediated gene silencing was used to test the involvement of oxysterol-mediated repression of SREBP-2 in STOX synergy. The impact of statin-mediated inhibition of protein prenylation and on cholesterol homeostasis was evaluated. RESULTS: Oxysterols dramatically enhance cytotoxicity of statins in ovarian cancer cells through increased apoptosis. Decreased expression of SREBP-2 down-regulates the mevalonate pathway and prevents the active statin-induced sterol feedback, enhancing statin toxicity. Comparison of two ovarian cancer cell lines reveals two distinct mechanisms of statin induced toxicity, namely, dependence on protein geranylgeranylation and/or perturbation of cellular cholesterol levels. CONCLUSIONS: We provide evidence of statins' mechanisms of cytotoxicity in different ovarian cancer cells and discovered a new approach to significantly enhance the anti-tumor activity of statins. These observations provide a potential new path to improve statins as a treatment against ovarian cancer with obtainable dosages.


Assuntos
Apoptose/efeitos dos fármacos , Hidroxicolesteróis/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Epiteliais e Glandulares , Neoplasias Ovarianas , Sinvastatina/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 2/antagonistas & inibidores , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Transdução de Sinais
12.
bioRxiv ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39253453

RESUMO

Glioblastoma (GBM) is the most common malignant primary brain tumor. GBM has an extremely poor prognosis and new treatments are badly needed. Efficient drug delivery to GBM is a major obstacle as the blood-brain barrier (BBB) prevents passage of the majority of cancer drugs into the brain. It is also recognized that the blood-brain tumor barrier (BTB) in the growing tumor represents a challenge. The BTB is heterogeneous and poorly characterized, but similar to the BBB it can prevent therapeutics from reaching effective intra-tumoral doses, dramatically hindering their potential. Here, we identified a 12-gene signature associated with the BTB, with functions related to vasculature development, morphogenesis and cell migration. We identified CDH5 as a core molecule in this set and confirmed its over-expression in GBM vasculature using spatial transcriptomics of GBM patient specimens. We found that the indirubin-derivative, 6-bromoindirubin acetoxime (BIA), could downregulate CDH5 and other BTB signature genes, causing endothelial barrier disruption in endothelial monolayers and BBB 3D spheroids in vitro. Treatment of tumor-bearing mice with BIA enabled increased intra-tumoral accumulation of the BBB non-penetrant chemotherapeutic drug cisplatin and potentiated cisplatin-mediated DNA damage by targeting DNA repair pathways. Finally, using an injectable BIA nanoparticle formulation, PPRX-1701, we significantly improved the efficacy of cisplatin in patient-derived GBM xenograms and prolonged their survival. Overall, our work reveals potential targets at the BTB for improved chemotherapy delivery and the bifunctional properties of BIA as a BTB modulator and potentiator of chemotherapy, supporting its further development.

13.
NPJ Genom Med ; 8(1): 15, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414817

RESUMO

The extracellular matrix (ECM) is a critical determinant of tumor fate that reflects the output from myriad cell types in the tumor. Collagens constitute the principal components of the tumor ECM. The changing collagen composition in tumors along with their impact on patient outcomes and possible biomarkers remains largely unknown. The RNA expression of the 43 collagen genes from solid tumors in The Cancer Genome Atlas (TCGA) was clustered to classify tumors. PanCancer analysis revealed how collagens by themselves can identify the tissue of origin. Clustering by collagens in each cancer type demonstrated strong associations with survival, specific immunoenvironments, somatic gene mutations, copy number variations, and aneuploidy. We developed a machine learning classifier that predicts aneuploidy, and chromosome arm copy number alteration (CNA) status based on collagen expression alone with high accuracy in many cancer types with somatic mutations, suggesting a strong relationship between the collagen ECM context and specific molecular alterations. These findings have broad implications in defining the relationship between cancer-related genetic defects and the tumor microenvironment to improve prognosis and therapeutic targeting for patient care, opening new avenues of investigation to define tumor ecosystems.

14.
Proc Natl Acad Sci U S A ; 106(7): 2277-82, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19164521

RESUMO

Decreased Indy activity extends lifespan in D. melanogaster without significant reduction in fecundity, metabolic rate, or locomotion. To understand the underlying mechanisms leading to lifespan extension in this mutant strain, we compared the genome-wide gene expression changes in the head and thorax of adult Indy mutant with control flies over the course of their lifespan. A signature enrichment analysis of metabolic and signaling pathways revealed that expression levels of genes in the oxidative phosphorylation pathway are significantly lower in Indy starting at day 20. We confirmed experimentally that complexes I and III of the electron transport chain have lower enzyme activity in Indy long-lived flies by Day 20 and predicted that reactive oxygen species (ROS) production in mitochondria could be reduced. Consistently, we found that both ROS production and protein damage are reduced in Indy with respect to control. However, we did not detect significant differences in total ATP, a phenotype that could be explained by our finding of a higher mitochondrial density in Indy mutants. Thus, one potential mechanism by which Indy mutants extend life span could be through an alteration in mitochondrial physiology leading to an increased efficiency in the ATP/ROS ratio.


Assuntos
Transportadores de Ácidos Dicarboxílicos/metabolismo , Proteínas de Drosophila/metabolismo , Espécies Reativas de Oxigênio , Simportadores/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transportadores de Ácidos Dicarboxílicos/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster , Transporte de Elétrons , Genoma , Masculino , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação , Estresse Oxidativo , Oxigênio/química , Fenótipo , Fosforilação , Simportadores/fisiologia
15.
Acta Neuropathol Commun ; 10(1): 159, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333778

RESUMO

A growing body of evidence supports the presence of a population of cells in glioblastoma (GBM) with a stem cell-like phenotype which shares certain biological markers with adult neural stem cells, including expression of SOX2, CD133 (PROM1), and NES (nestin). This study was designed to determine the relationship between the expression of these stem cell markers and the clinical outcome in GBM patients. We quantified the intensity of expression of the proteins CD133 and SOX2 by immunohistochemistry (IHC) in a cohort of 86 patients with IDH-wildtype GBM, and evaluated patient outcomes using Kaplan-Meier and Cox proportional hazards analysis. In our patients, MGMT promoter methylation status and age were predictors of overall survival and progression free survival. The levels of SOX2 and CD133 were not associated with outcome in univariate analysis; however, stratification of tumors based on low or high levels of CD133 or SOX2 expression revealed that MGMT methylation was a predictor of progression-free survival and overall survival only for tumors with high levels of expression of CD133 or SOX2. Tumors with low levels of expression of CD133 or SOX2 did not show any relationship between MGMT methylation and survival. This relationship between MGMT and stem cell markers was confirmed in a second patient cohort, the TCGA dataset. Our results show that stratification of GBM by the level of expression of CD133 and SOX2 improved the prognostic power of MGMT promoter methylation status, identifying a low-expressing group in which the clinical outcome is not associated with MGMT promoter methylation status, and a high-expressing group in which the outcome was strongly associated with MGMT promoter methylation status. These findings support the concept that the presence of a high stem cell phenotype in GBM, as marked by expression of SOX2 or CD133, may be associated with the clinical response to treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Neoplasias Encefálicas/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Metilação de DNA , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Fenótipo , Células-Tronco/metabolismo
16.
BMC Cancer ; 11: 308, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21781307

RESUMO

BACKGROUND: Ovarian cancer is the most deadly gynecological cancer with a very poor prognosis. Xenograft mouse models have proven to be one very useful tool in testing candidate therapeutic agents and gene function in vivo. In this study we identify genes and gene networks important for the efficacy of a pre-clinical anti-tumor therapeutic, MT19c. METHODS: In order to understand how ovarian xenograft tumors may be growing and responding to anti-tumor therapeutics, we used genome-wide mRNA expression and DNA copy number measurements to identify key genes and pathways that may be critical for SKOV-3 xenograft tumor progression. We compared SKOV-3 xenografts treated with the ergocalciferol derived, MT19c, to untreated tumors collected at multiple time points. Cell viability assays were used to test the function of the PPARγ agonist, Rosiglitazone, on SKOV-3 cell growth. RESULTS: These data indicate that a number of known survival and growth pathways including Notch signaling and general apoptosis factors are differentially expressed in treated vs. untreated xenografts. As tumors grow, cell cycle and DNA replication genes show increased expression, consistent with faster growth. The steroid nuclear receptor, PPARγ, was significantly up-regulated in MT19c treated xenografts. Surprisingly, stimulation of PPARγ with Rosiglitazone reduced the efficacy of MT19c and cisplatin suggesting that PPARγ is regulating a survival pathway in SKOV-3 cells. To identify which genes may be important for tumor growth and treatment response, we observed that MT19c down-regulates some high copy number genes and stimulates expression of some low copy number genes suggesting that these genes are particularly important for SKOV-3 xenograft growth and survival. CONCLUSIONS: We have characterized the time dependent responses of ovarian xenograft tumors to the vitamin D analog, MT19c. Our results suggest that PPARγ promotes survival for some ovarian tumor cells. We propose that a combination of regulated expression and copy number can identify genes that are likely important for chemotherapy response. Our findings suggest a new approach to identify candidate genes that are critical for anti-tumor therapy.


Assuntos
Antineoplásicos/farmacologia , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Análise por Conglomerados , Ergocalciferóis/química , Ergocalciferóis/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/patologia , PPAR gama/agonistas , PPAR gama/genética , PPAR gama/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosiglitazona , Tiazolidinedionas/farmacologia , Transcriptoma , Carga Tumoral/efeitos dos fármacos , Vitaminas/química , Vitaminas/farmacologia
17.
Int J Gynecol Cancer ; 21(8): 1350-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21921802

RESUMO

OBJECTIVE: To determine the function of T0901317 in combination treatment with cisplatin in ovarian cancer cells. METHODS: We screened the effects of 3 nuclear hormone receptor ligands on cell viability in a panel of ovarian cancer cell lines. T0901317 regulation of apoptosis and cell cycle regulators was determined when applied as a single agent or in combination with cisplatin. RESULTS: Surprisingly, the liver X receptor agonist T0901317 had no significant effects on a panel of 7 ovarian cancer cell lines as a single agent. T0901317 does, however, significantly decrease cisplatin efficacy in at least 3 ovarian cancer cell lines. T0901317 reduces cisplatin-induced apoptosis and reverses cisplatin-induced expression of cell cycle regulators. T0901317 seems to work in a liver X receptor-, pregnane X receptor-, and farnesoid X receptor-independent manner, as agonists of these nuclear hormone receptors did not show similar effects. Interestingly, in the A2780-cp drug-resistant cell line, the effect of T0901317 is lost, suggesting that the pathways stimulated by T0901317 to reduce cisplatin efficacy could be inherently active features of the selected resistance. CONCLUSIONS: Together, these data suggest that T0901317 inhibits cisplatin in some ovarian cancer cells. These data provide an avenue to investigate when T0901317 may be acting to promote tumor survival and drug resistance through control of apoptosis and when it may be acting as an antitumor agent as has been previously reported.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Cisplatino/uso terapêutico , Hidrocarbonetos Fluorados/farmacologia , Receptores Nucleares Órfãos/agonistas , Neoplasias Ovarianas/tratamento farmacológico , Sulfonamidas/farmacologia , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Antagonismo de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Receptores X do Fígado
18.
Front Cell Dev Biol ; 9: 725071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552931

RESUMO

Human osteoarthritic cartilage contains not only chondrocytes (OACs), but also mesenchymal stromal cells (OA-MSCs), whose abundance increases during osteoarthritis (OA). However, it is not clear how OA-MSC contributes to OA pathogenesis. Here, we show that aging OA-MSC plays an important role in cell senescence, fibrosis, and inflammation in cartilage. Protein array analysis indicates that OA-MSC expresses pro-inflammatory senescence associated secretory phenotype (SASP) including IL-1ß, IL-6, IL-8, and CXCL1, 5, and 6, which play key roles in OA pathogenesis. OAC is a main recipient of the inflammatory signals by expressing receptors of cytokines. RNAseq analysis indicates that the transition from normal cartilage stromal cells (NCSCs) to OA-MSC during aging results in activation of SASP gene expression. This cell transition process can be recapitulated by a serial passage of primary OAC in cell culture comprising (1) OAC dedifferentiation into NCSC-like cells, and (2) its subsequent senescence into pro-inflammatory OA-MSC. While OAC dedifferentiation is mediated by transcriptional repression of chondrogenic gene expression, OA-MSC senescence is mediated by transcriptional activation of SASP gene expression. We postulate that, through replication-driven OAC dedifferentiation and mesenchymal stromal cell (MSC) senescence, OA-MSC becomes an internal source of sterile inflammation in human cartilage joint.

19.
Aging Cancer ; 2(4): 137-159, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36303712

RESUMO

Background: Glioblastoma (GBM) is an aggressive, age-associated malignant glioma that contains populations of cancer stem cells. These glioma stem cells (GSCs) evade therapeutic interventions and repopulate tumors due to their existence in a slowly cycling quiescent state. Although aging is well known to increase cancer initiation, the extent to which the mechanisms supporting GSC tumorigenicity are related to physiological aging remains unknown. Aims: Here, we investigate the transcriptional mechanisms by which Forkhead Box O3 (FOXO3), a transcriptional regulator that promotes healthy aging, affects GSC function and the extent to which FOXO3 transcriptional networks are dysregulated in aging and GBM. Methods and results: We performed transcriptome analysis of clinical GBM tumors and observed that high FOXO3 activity is associated with gene expression signatures of stem cell quiescence, reduced oxidative metabolism, and improved patient outcomes. Consistent with these findings, we show that elevated FOXO3 activity significantly reduces the proliferation of GBM-derived GSCs. Using RNA-seq, we find that functional ablation of FOXO3 in GSCs rewires the transcriptional circuitry associated with metabolism, epigenetic stability, quiescence, and differentiation. Since FOXO3 has been implicated in healthy aging, we then investigated the extent to which it regulates common transcriptional programs in aging neural stem cells (NSCs) and GSCs. We uncover a shared transcriptional program and, most strikingly, find that FOXO3-regulated pathways are associated with altered mitochondrial functions in both aging and GBM. Conclusions: This work identifies a FOXO-associated transcriptional program that correlates between GSCs and aging NSCs and is enriched for metabolic and stemness pathways connected with GBM and aging.

20.
J Am Heart Assoc ; 10(4): e017437, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33559477

RESUMO

Background Mesenchymal stem cell-derived extracellular vesicles (EVs) promote angiogenesis in the ischemic myocardium. This study examines the difference in vascular density, myocardial perfusion, molecular signaling, and gene expression between normal diet (ND) and high fat diet (HFD) groups at baseline and following intramyocardial injection of EVs. Methods and Results Intact male Yorkshire swine fed either an ND (n=17) or HFD (n=14) underwent placement of an ameroid constrictor on the left circumflex coronary artery. Subsequently, animals received either intramyocardial injection of vehicle-saline as controls; (ND-controls n=7, HFD-controls, n=6) or EVs; (ND-EVs n=10, HFD-EVs n=8) into the ischemic territory. Five weeks later, myocardial function, perfusion, vascular density, cell signaling, and gene expression were examined. EVs improved indices of myocardial contractile function, myocardial perfusion, and arteriogenesis in both dietary cohorts. Interestingly, quantification of alpha smooth muscle actin demonstrated higher basal arteriolar density in HFD swine compared with their ND counterparts; whereas EVs were associated with increased CD31-labeled endothelial cell density only in the ND tissue, which approached significance. Levels of total endothelial nitric oxide synthase, FOXO1 (forkhead box protein O1) , transforming growth factor-ß, phosphorylated VEGFR2 (vascular endothelial growth factor receptor 2), and phosphorylated MAPK ERK1/ERK2 (mitogen-activated protein kinase) were higher in ischemic myocardial lysates from ND-controls compared with HFD-controls. Conversely, HFD-control tissue showed increased expression of phosphorylated endothelial nitric oxide synthase, phosphorylated FOXO1, VEGFR2, and MAPK ERK1/ERK2 with respect to ND-controls. Preliminary gene expression studies indicate differential modulation of transcriptional activity by EVs between the 2 dietary cohorts. Conclusions HFD produces a profound metabolic disorder that dysregulates the molecular mechanisms of collateral vessel formation in the ischemic myocardium, which may hinder the therapeutic angiogenic effects of EVs.


Assuntos
Indutores da Angiogênese/farmacologia , Circulação Coronária/fisiologia , Vasos Coronários/diagnóstico por imagem , Dieta Hiperlipídica/efeitos adversos , Vesículas Extracelulares/patologia , Isquemia Miocárdica/etiologia , Miocárdio/metabolismo , Animais , Doença Crônica , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Masculino , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/metabolismo , Miocárdio/patologia , Neovascularização Patológica/diagnóstico , Neovascularização Patológica/etiologia , Neovascularização Patológica/metabolismo , Fosforilação , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa