Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cell ; 149(1): 13-5, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22464317

RESUMO

Switching mRNA translation off and on is central to regulated gene expression, but what mechanisms moderate the extent of switch-off? Yao et al. describe how basal expression from interferon-gamma-induced transcripts is maintained during mRNA-specific translational repression. This antagonistic mechanism utilizes a truncated RNA-binding factor generated by a unique alternative polyadenylation event.

2.
Trends Immunol ; 43(1): 8-21, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844848

RESUMO

Organ transplantation is a modern medical success story. However, since its inception it has been limited by the need for pharmacological immunosuppression. Regulatory cellular therapies offer an attractive solution to these challenges by controlling transplant alloresponses through multiple parallel suppressive mechanisms. A number of cell types have seen an accelerated development into human trials and are now on the threshold of a long-awaited breakthrough in personalized transplant therapeutics. Here we assess recent developments with a focus on the most likely candidates, some of which have already facilitated successful immunosuppression withdrawal in early clinical trials. We propose that this may constitute a promising approach in clinical transplantation but also evaluate outstanding issues in the field, providing cause for cautious optimism.


Assuntos
Transplante de Órgãos , Tolerância ao Transplante , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Tolerância Imunológica , Terapia de Imunossupressão
3.
J Physiol ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37856286

RESUMO

Impairments in myofibrillar protein synthesis (MyoPS) during bed rest accelerate skeletal muscle loss in older adults, increasing the risk of adverse secondary health outcomes. We investigated the effect of prior resistance exercise (RE) on MyoPS and muscle morphology during a disuse event in 10 healthy older men (65-80 years). Participants completed a single bout of unilateral leg RE the evening prior to 5 days of in-patient bed-rest. Quadriceps cross-sectional area (CSA) was determined prior to and following bed-rest. Serial muscle biopsies and dual stable isotope tracers were used to determine rates of integrated MyoPS (iMyoPS) over a 7 day habitual 'free-living' phase and the bed-rest phase, and rates of acute postabsorptive and postprandial MyoPS (aMyoPS) at the end of bed rest. Quadriceps CSA at 40%, 60% and 80% of muscle length significantly decreased in exercised (EX) and non-exercised control (CTL) legs with bed-rest. The decline in quadriceps CSA at 40% and 60% of muscle length was attenuated in EX compared with CTL. During bed-rest, iMyoPS rates decreased from habitual values in CTL, but not EX, and were significantly different between legs. Postprandial aMyoPS rates increased above postabsorptive values in EX only. The change in iMyoPS over bed-rest correlated with the change in quadriceps CSA in CTL, but not EX. A single bout of RE attenuated the decline in iMyoPS rates and quadriceps atrophy with 5 days of bed-rest in older men. Further work is required to understand the functional and clinical implications of prior RE in older patient populations. KEY POINTS: Age-related skeletal muscle deterioration, linked to numerous adverse health outcomes, is driven by impairments in muscle protein synthesis that are accelerated during periods of disuse. Resistance exercise can stimulate muscle protein synthesis over several days of recovery and therefore could counteract impairments in this process that occur in the early phase of disuse. In the present study, we demonstrate that the decline in myofibrillar protein synthesis and muscle atrophy over 5 days of bed-rest in older men was attenuated by a single bout of unilateral resistance exercise performed the evening prior to bed-rest. These findings suggest that concise resistance exercise intervention holds the potential to support muscle mass retention in older individuals during short-term disuse, with implications for delaying sarcopenia progression in ageing populations.

4.
Magn Reson Med ; 89(4): 1514-1521, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36426762

RESUMO

PURPOSE: To characterize the (2 H) deuterium MR signal measured from human brain at 7T in participants loading with D2 O to ˜1.5% enrichment over a six-week period. METHODS: 2 H spectroscopy and imaging measurements were used to track the time-course of 2 H enrichment within the brain during the initial eight-hour loading period in two participants. Multi-echo gradient echo (MEGE) images were acquired at a range of TR values from four participants during the steady-state loading period and used for mapping 2 H T1 and T2 * relaxation times. Co-registration to higher resolution 1 H images allowed T1 and T2 * relaxation times of deuterium in HDO in cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) to be estimated. RESULTS: 2 H concentrations measured during the eight-hour loading were consistent with values estimated from cumulative D2 O dose and body mass. Signal changes measured from three different regions of the brain during loading showed similar time-courses. After summing over echoes, gradient echo brain images acquired in 7.5 minutes with a voxel volume of 0.36 ml showed an SNR of ˜16 in subjects loaded to 1.5%. T1 -values for deuterium in HDO were significantly shorter than corresponding values for 1 H in H2 O, while T2 * values were similar. 2 H relaxation times in CSF were significantly longer than in GM or WM. CONCLUSION: Deuterium MR Measurements at 7T were used to track the increase in concentration of 2 H in brain during heavy water loading. 2 H T1 and T2 * relaxation times from water in GM, WM, and CSF are reported.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Deutério , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Mapeamento Encefálico/métodos
5.
FASEB J ; 35(8): e21773, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34324735

RESUMO

Acute hypoxia has previously been suggested to potentiate resistance training-induced hypertrophy by activating satellite cell-dependent myogenesis rather than an improvement in protein balance in human. Here, we tested this hypothesis after a 4-week hypoxic vs normoxic resistance training protocol. For that purpose, 19 physically active male subjects were recruited to perform 6 sets of 10 repetitions of a one-leg knee extension exercise at 80% 1-RM 3 times/week for 4 weeks in normoxia (FiO2 : 0.21; n = 9) or in hypoxia (FiO2 : 0.135, n = 10). Blood and skeletal muscle samples were taken before and after the training period. Muscle fractional protein synthetic rate was measured over the whole period by deuterium incorporation into the protein pool and muscle thickness by ultrasound. At the end of the training protocol, the strength gain was higher in the hypoxic vs the normoxic group despite no changes in muscle thickness and in the fractional protein synthetic rate. Only early myogenesis, as assessed by higher MyoD and Myf5 mRNA levels, appeared to be enhanced by hypoxia compared to normoxia. No effects were found on myosin heavy chain expression, markers of oxidative metabolism and lactate transport in the skeletal muscle. Though the present study failed to unravel clearly the mechanisms by which hypoxic resistance training is particularly potent to increase muscle strength, it is important message to keep in mind that this training strategy could be effective for all athletes looking at developing and optimizing their maximal muscle strength.


Assuntos
Proteínas Musculares/metabolismo , Força Muscular/fisiologia , Músculo Esquelético/anatomia & histologia , Oxigênio/metabolismo , Treinamento Resistido/métodos , Regulação da Expressão Gênica , Humanos , Masculino , Músculo Esquelético/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Adulto Jovem
6.
FASEB J ; 35(9): e21830, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34342902

RESUMO

Muscle disuse leads to a rapid decline in muscle mass, with reduced muscle protein synthesis (MPS) considered the primary physiological mechanism. Here, we employed a systems biology approach to uncover molecular networks and key molecular candidates that quantitatively link to the degree of muscle atrophy and/or extent of decline in MPS during short-term disuse in humans. After consuming a bolus dose of deuterium oxide (D2 O; 3 mL.kg-1 ), eight healthy males (22 ± 2 years) underwent 4 days of unilateral lower-limb immobilization. Bilateral muscle biopsies were obtained post-intervention for RNA sequencing and D2 O-derived measurement of MPS, with thigh lean mass quantified using dual-energy X-ray absorptiometry. Application of weighted gene co-expression network analysis identified 15 distinct gene clusters ("modules") with an expression profile regulated by disuse and/or quantitatively connected to disuse-induced muscle mass or MPS changes. Module scans for candidate targets established an experimentally tractable set of candidate regulatory molecules (242 hub genes, 31 transcriptional regulators) associated with disuse-induced maladaptation, many themselves potently tied to disuse-induced reductions in muscle mass and/or MPS and, therefore, strong physiologically relevant candidates. Notably, we implicate a putative role for muscle protein breakdown-related molecular networks in impairing MPS during short-term disuse, and further establish DEPTOR (a potent mTOR inhibitor) as a critical mechanistic candidate of disuse driven MPS suppression in humans. Overall, these findings offer a strong benchmark for accelerating mechanistic understanding of short-term muscle disuse atrophy that may help expedite development of therapeutic interventions.


Assuntos
Proteínas Musculares/genética , Músculo Esquelético/fisiologia , Atrofia Muscular/genética , Doenças Musculares/genética , Biossíntese de Proteínas/genética , Transcriptoma/genética , Adulto , Humanos , Masculino , Força Muscular/genética , Adulto Jovem
7.
J Physiol ; 599(3): 963-979, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33258480

RESUMO

KEY POINTS: Reduced vitamin D receptor (VDR) expression prompts skeletal muscle atrophy. Atrophy occurs through catabolic processes, namely the induction of autophagy, while anabolism remains unchanged. In response to VDR-knockdown mitochondrial function and related gene-set expression is impaired. In vitro VDR knockdown induces myogenic dysregulation occurring through impaired differentiation. These results highlight the autonomous role the VDR has within skeletal muscle mass regulation. ABSTRACT: Vitamin D deficiency is estimated to affect ∼40% of the world's population and has been associated with impaired muscle maintenance. Vitamin D exerts its actions through the vitamin D receptor (VDR), the expression of which was recently confirmed in skeletal muscle, and its down-regulation is linked to reduced muscle mass and functional decline. To identify potential mechanisms underlying muscle atrophy, we studied the impact of VDR knockdown (KD) on mature skeletal muscle in vivo, and myogenic regulation in vitro in C2C12 cells. Male Wistar rats underwent in vivo electrotransfer (IVE) to knock down the VDR in hind-limb tibialis anterior (TA) muscle for 10 days. Comprehensive metabolic and physiological analysis was undertaken to define the influence loss of the VDR on muscle fibre composition, protein synthesis, anabolic and catabolic signalling, mitochondrial phenotype and gene expression. Finally, in vitro lentiviral transfection was used to induce sustained VDR-KD in C2C12 cells to analyse myogenic regulation. Muscle VDR-KD elicited atrophy through a reduction in total protein content, resulting in lower myofibre area. Activation of autophagic processes was observed, with no effect upon muscle protein synthesis or anabolic signalling. Furthermore, RNA-sequencing analysis identified systematic down-regulation of multiple mitochondrial respiration-related protein and genesets. Finally, in vitro VDR-knockdown impaired myogenesis (cell cycling, differentiation and myotube formation). Together, these data indicate a fundamental regulatory role of the VDR in the regulation of myogenesis and muscle mass, whereby it acts to maintain muscle mitochondrial function and limit autophagy.


Assuntos
Receptores de Calcitriol , Deficiência de Vitamina D , Animais , Masculino , Fibras Musculares Esqueléticas , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Ratos , Ratos Wistar , Receptores de Calcitriol/genética , Vitamina D
8.
Am J Transplant ; 21(4): 1603-1611, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33171020

RESUMO

Short-term outcomes in kidney transplantation are marred by progressive transplant failure and mortality secondary to immunosuppression toxicity. Immune modulation with autologous polyclonal regulatory T cell (Treg) therapy may facilitate immunosuppression reduction promoting better long-term clinical outcomes. In a Phase I clinical trial, 12 kidney transplant recipients received 1-10 × 106 Treg per kg at Day +5 posttransplantation in lieu of induction immunosuppression (Treg Therapy cohort). Nineteen patients received standard immunosuppression (Reference cohort). Primary outcomes were rejection-free and patient survival. Patient and transplant survival was 100%; acute rejection-free survival was 100% in the Treg Therapy versus 78.9% in the reference cohort at 48 months posttransplant. Treg therapy revealed no excess safety concerns. Four patients in the Treg Therapy cohort had mycophenolate mofetil withdrawn successfully and remain on tacrolimus monotherapy. Treg infusion resulted in a long-lasting dose-dependent increase in peripheral blood Tregs together with an increase in marginal zone B cell numbers. We identified a pretransplantation immune phenotype suggesting a high risk of unsuccessful ex-vivo Treg expansion. Autologous Treg therapy is feasible, safe, and is potentially associated with a lower rejection rate than standard immunosuppression. Treg therapy may provide an exciting opportunity to minimize immunosuppression therapy and improve long-term outcomes.


Assuntos
Transplante de Rim , Estudos de Viabilidade , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/prevenção & controle , Humanos , Imunossupressores/uso terapêutico , Doadores Vivos , Monitorização Imunológica , Linfócitos T Reguladores
9.
Curr Opin Clin Nutr Metab Care ; 23(3): 174-180, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32175954

RESUMO

PURPOSE OF REVIEW: Skeletal muscle has many essential roles in maintaining human health, not only being crucial for locomotion, but further as a metabolically important organ. Muscle wasting in disease (cachexia) is highly prevalent, associated with poor clinical outcomes and is not fully reversible with nutritional interventions. Understanding proteostasis in diseased states is of great importance to design novel, effective nutritional/nutraceutical strategies aimed at alleviating muscle wasting. In this review, we will provide an update on muscle kinetics in disease and the effects of nutritional interventions. RECENT FINDINGS: Whole body and skeletal muscle kinetics are commonly shown to be imbalanced in disease, promoting overall catabolism that underlies the development of cachexia. However, recent advancements in defining the effectiveness of nutritional interventions on muscle anabolism are clouded by heterogenous patient populations and a lack of direct incorporation stable isotope techniques. Current recommendations are focused on combating malnutrition, with increased protein intake (high in EAA) demonstrating promise. SUMMARY: Recent progress in understanding catabolic states in cachexia across disease is minimal. Further, studies investigating muscle-specific protein turnover along with nutritional interventions are scarce. As such, there is a significant requirement for strong RCT's investigating both acute and chronic nutritional interventions and their impact on skeletal muscle in individual disease states.


Assuntos
Caquexia/metabolismo , Suplementos Nutricionais , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Terapia Nutricional/métodos , Caquexia/etiologia , Caquexia/terapia , Humanos , Proteínas Musculares/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/terapia , Necessidades Nutricionais
10.
Exp Physiol ; 105(7): 1081-1089, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32362047

RESUMO

NEW FINDINGS: What is the topic of this review? This review discusses the application of new stable isotope tracer techniques in understanding the control of skeletal muscle mass. What advances does it highlight? This review highlights current advances in stable isotope tracer techniques through their combination with high-throughput proteomics technologies. ABSTRACT: Beyond its primary locomotory and key structural functions, skeletal muscle provides additional vital roles for maintenance of metabolic health, acting as a storage point for glucose and intramuscular lipids for energy production, alongside being the largest reservoir for amino acids in the body. Therefore, maintenance of muscle mass is key to the promotion of health and well-being across the lifespan and in several disease states. As such, when skeletal muscle is lost, in either clinical (cancer, organ failure etc.) or non-clinical (ageing, inactivity) situations, there are potentially devastating consequences attached, with robust links existing between muscle mass loss and mortality. Great efforts are being made to reverse or slow muscle mass declines in health and disease, through combinations of lifestyle changes and nutritional and/or pharmaceutical intervention. However, despite this comprehensive research effort, the underlying metabolic and molecular mechanisms have yet to be defined properly. However, with the rapid acceleration of analytical developments over recent years, the application of stable isotope tracers to the study of human muscle metabolism is providing unique insights into the mechanisms controlling skeletal muscle loss and allowing more targeted therapeutic strategies to be developed. The aim of this review is to highlight the technical breakthroughs in our understanding of muscle wasting in health and disease and how future directions and developments incorporating 'omics' with stable isotope tracers will allow for a more personalized and stratified therapeutic approach.


Assuntos
Isótopos/análise , Músculo Esquelético/metabolismo , Fenômenos Fisiológicos Musculoesqueléticos , Animais , Glucose/metabolismo , Humanos , Doenças Musculares/metabolismo , Tamanho do Órgão , Sarcopenia/metabolismo , Síndrome de Emaciação/metabolismo
11.
FASEB J ; 32(10): 5272-5284, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29672220

RESUMO

We hypothesized that a single session of resistance exercise performed in moderate hypoxic (FiO2: 14%) environmental conditions would potentiate the anabolic response during the recovery period spent in normoxia. Twenty subjects performed a 1-leg knee extension session in normoxic or hypoxic conditions. Muscle biopsies were taken 15 min and 4 h after exercise in the vastus lateralis of the exercised and the nonexercised legs. Blood and saliva samples were taken at regular intervals before, during, and after the exercise session. The muscle fractional-protein synthetic rate was determined by deuterium incorporation into proteins, and the protein-degradation rate was determined by methylhistidine release from skeletal muscle. We found that: 1) hypoxia blunted the activation of protein synthesis after resistance exercise; 2) hypoxia down-regulated the transcriptional program of autophagy; 3) hypoxia regulated the expression of genes involved in glucose metabolism at rest and the genes involved in myoblast differentiation and fusion and in muscle contraction machinery after exercise; and 4) the hypoxia-inducible factor-1α pathway was not activated at the time points studied. Contrary to our hypothesis, environmental hypoxia did not potentiate the short-term anabolic response after resistance exercise, but it initiated transcriptional regulations that could potentially translate into satellite cell incorporation and higher force production in the long term.-Gnimassou, O., Fernández-Verdejo, R., Brook, M., Naslain, D., Balan, E., Sayda, M., Cegielski, J., Nielens, H., Decottignies, A., Demoulin, J.-B., Smith, K., Atherton, P. J., Fancaux, M., Deldicque, L. Environmental hypoxia favors myoblast differentiation and fast phenotype but blunts activation of protein synthesis after resistance exercise in human skeletal muscle.


Assuntos
Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/metabolismo , Condicionamento Físico Humano/fisiologia , Biossíntese de Proteínas/fisiologia , Proteólise , Adulto , Hipóxia Celular/fisiologia , Humanos , Masculino , Força Muscular/fisiologia , Músculo Esquelético/patologia , Mioblastos Esqueléticos/citologia
12.
Proc Natl Acad Sci U S A ; 113(16): 4350-5, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27044108

RESUMO

Neutrophils are the first and most numerous cells to arrive at the site of an inflammatory insult and are among the first to die. We previously reported that alpha defensins, released from apoptotic human neutrophils, augmented the antimicrobial capacity of macrophages while also inhibiting the biosynthesis of proinflammatory cytokines. In vivo, alpha defensin administration protected mice from inflammation, induced by thioglychollate-induced peritonitis or following infection withSalmonella entericaserovar Typhimurium. We have now dissected the antiinflammatory mechanism of action of the most abundant neutrophil alpha defensin, Human Neutrophil Peptide 1 (HNP1). Herein we show that HNP1 enters macrophages and inhibits protein translation without inducing the unfolded-protein response or affecting mRNA stability. In a cell-free in vitro translation system, HNP1 powerfully inhibited both cap-dependent and cap-independent mRNA translation while maintaining mRNA polysomal association. This is, to our knowledge, the first demonstration of a peptide released from one cell type (neutrophils) directly regulating mRNA translation in another (macrophages). By preventing protein translation, HNP1 functions as a "molecular brake" on macrophage-driven inflammation, ensuring both pathogen clearance and the resolution of inflammation with minimal bystander tissue damage.


Assuntos
Macrófagos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Infecções por Salmonella/metabolismo , Salmonella typhimurium , alfa-Defensinas/metabolismo , Animais , Humanos , Macrófagos/patologia , Camundongos , Infecções por Salmonella/patologia , alfa-Defensinas/farmacologia
13.
Exp Physiol ; 103(11): 1513-1523, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30184287

RESUMO

NEW FINDINGS: What is the central question of this study? Can phenotypic traits associated with low response to one mode of training be extrapolated to other exercise-inducible phenotypes? The present study investigated whether rats that are low responders to endurance training are also low responders to resistance training. What is the main finding and its importance? After resistance training, rats that are high responders to aerobic exercise training improved more in maximal strength compared with low-responder rats. However, the greater gain in strength in high-responder rats was not accompanied by muscle hypertrophy, suggesting that the responses observed could be mainly neural in origin. ABSTRACT: The purpose of this study was to determine whether rats selectively bred for low and high response to aerobic exercise training co-segregate for differences in muscle adaptations to ladder-climbing resistance training. Five high-responder (HRT) and five low-responder (LRT) rats completed the resistance training, while six HRT and six LRT rats served as sedentary control animals. Before and after the 6 week intervention, body composition was determined by dual energy X-ray absorptiometry. Before tissue harvesting, the right triceps surae muscles were loaded by electrical stimulation. Muscle fibre cross-sectional areas, nuclei per cell, phosphorylation status of selected signalling proteins of mTOR and Smad pathways, and muscle protein, DNA and RNA concentrations were determined for the right gastrocnemius muscle. The daily protein synthesis rate was determined by the deuterium oxide method from the left quadriceps femoris muscle. Tissue weights of fore- and hindlimb muscles were measured. In response to resistance training, maximal carrying capacity was greater in HRT (∼3.3 times body mass) than LRT (∼2.5 times body mass), indicating greater improvements of strength in HRT. However, muscle hypertrophy that could be related to greater strength gains in HRT was not observed. Furthermore, noteworthy changes within the experimental groups or differences between groups were not observed in the present measures. The lack of hypertrophic muscular adaptations despite considerable increases in muscular strength suggest that adaptations to the present ladder-climbing training in HRT and LRT rats were largely induced by neural adaptations.


Assuntos
Adaptação Fisiológica/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Composição Corporal/fisiologia , Masculino , Ratos , Treinamento Resistido
14.
J Physiol ; 595(9): 2873-2882, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27610950

RESUMO

Stable isotope tracers have been invaluable assets in physiological research for over 80 years. The application of substrate-specific stable isotope tracers has permitted exquisite insight into amino acid, fatty-acid and carbohydrate metabolic regulation (i.e. incorporation, flux, and oxidation, in a tissue-specific and whole-body fashion) in health, disease and response to acute and chronic exercise. Yet, despite many breakthroughs, there are limitations to 'substrate-specific' stable isotope tracers, which limit physiological insight, e.g. the need for intravenous infusions and restriction to short-term studies (hours) in controlled laboratory settings. In recent years significant interest has developed in alternative stable isotope tracer techniques that overcome these limitations, in particular deuterium oxide (D2 O or heavy water). The unique properties of this tracer mean that through oral administration, the turnover and flux through a number of different substrates (muscle proteins, lipids, glucose, DNA (satellite cells)) can be monitored simultaneously and flexibly (hours/weeks/months) without the need for restrictive experimental control. This makes it uniquely suited for the study of 'real world' human exercise physiology (amongst many other applications). Moreover, using D2 O permits evaluation of turnover of plasma and muscle proteins (e.g. dynamic proteomics) in addition to metabolomics (e.g. fluxomics) to seek molecular underpinnings, e.g. of exercise adaptation. Here, we provide insight into the role of stable isotope tracers, from substrate-specific to novel D2 O approaches, in facilitating our understanding of metabolism. Further novel potential applications of stable isotope tracers are also discussed in the context of integration with the snowballing field of 'omic' technologies.


Assuntos
Óxido de Deutério/farmacocinética , Exercício Físico/fisiologia , Metabolômica/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Eliminação Renal , Distribuição Tecidual
15.
Curr Opin Clin Nutr Metab Care ; 20(6): 433-439, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28832372

RESUMO

PURPOSE OF REVIEW: In addition to being essential for movement, skeletal muscles act as both a store and source of key macronutrients. As such, muscle is an important tissue for whole body homeostasis, undergoing muscle wasting in times of starvation, disease, and stress, for example, to provide energy substrates for other tissues. Yet, muscle wasting is also associated with disability, comorbidities, and mortality. As nutrition is so crucial to maintaining muscle homeostasis 'in health', it has been postulated that muscle wasting in cachexia syndromes may be alleviated by nutritional interventions. This review will highlight recent work in this area in relation to muscle kinetics, the acute metabolic (e.g. dietary protein), and longer-term effects of dietary interventions. RECENT FINDINGS: Whole body and skeletal muscle protein synthesis invariably exhibit deranged kinetics (favouring catabolism) in wasting states; further, many of these conditions harbour blunted anabolic responses to protein nutrition compared with healthy controls. These derangements underlie muscle wasting. Recent trials of essential amino acid and protein-based nutrition have shown some potential for therapeutic benefit. SUMMARY: Nutritional modulation, particularly of dietary amino acids, may have benefits to prevent or attenuate disease-induced muscle wasting. Nonetheless, there remains a lack of recent studies exploring these key concepts to make conclusive recommendations.


Assuntos
Caquexia/complicações , Dieta , Desnutrição/dietoterapia , Doenças Metabólicas/dietoterapia , Atrofia Muscular/dietoterapia , Síndrome de Emaciação/dietoterapia , Doença Aguda , Caquexia/dietoterapia , Comorbidade , Dieta Rica em Proteínas , Proteínas Alimentares/administração & dosagem , Gerenciamento Clínico , Humanos , Desnutrição/complicações , Doenças Metabólicas/complicações , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Neoplasias/complicações , Neoplasias/dietoterapia , Estado Nutricional , Síndrome de Emaciação/etiologia
16.
Curr Opin Clin Nutr Metab Care ; 20(5): 375-381, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28650854

RESUMO

PURPOSE OF REVIEW: Methods that inform on dynamic metabolism that can be applied to clinical populations to understand disease progression and responses to therapeutic interventions are of great importance. This review perspective will highlight recent advances, development, and applications of the multivalent stable isotope tracer deuterium oxide (D2O) to the study of substrate metabolism with particular reference to protein, lipids, and nucleic acids, and how these methods can be readily applied within clinical and pharmaceutical research. RECENT FINDINGS: Advances in the application of D2O techniques now permit the simultaneous dynamic measurement of a range of substrates (i.e. protein, lipid, and nucleic acids, along with the potential for OMICs methodologies) with minimal invasiveness further creating opportunities for long-term 'free living' measures that can be used in clinical settings. These techniques have recently been applied to ageing populations and further in cancer patients revealing altered muscle protein metabolism. Additionally, the efficacy of numerous drugs in improving lipoprotein profiles and controlling cellular proliferation in leukaemia have been revealed. SUMMARY: D2O provides opportunities to create a more holistic picture of in-vivo metabolic phenotypes, providing a unique platform for development in clinical applications, and the emerging field of personalized medicine.


Assuntos
Pesquisa Biomédica/métodos , Metabolismo Energético , Metabolômica/métodos , Animais , Pesquisa Biomédica/tendências , Óxido de Deutério , Humanos , Metabolismo dos Lipídeos , Metabolômica/tendências , Músculo Esquelético/metabolismo , Ácidos Nucleicos/metabolismo , Proteômica/métodos , Proteômica/tendências
17.
J Physiol ; 594(24): 7399-7417, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27654940

RESUMO

KEY POINTS: Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long-term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age-related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. ABSTRACT: Ageing is associated with impaired hypertrophic responses to resistance exercise training (RET). Here we investigated the aetiology of 'anabolic resistance' in older humans. Twenty healthy male individuals, 10 younger (Y; 23 ± 1 years) and 10 older (O; 69 ± 3 years), performed 6 weeks unilateral RET (6 × 8 repetitions, 75% of one repetition maximum (1-RM), 3 times per week). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2 O (70 atom%; thereafter 50 ml week-1 ), further bilateral VL muscle biopsies were taken at 3 and 6 weeks to quantify muscle protein synthesis (MPS) via gas chromatography-pyrolysis-isotope ratio mass spectrometry. After RET, 1-RM increased in Y (+35 ± 4%) and O (+25 ± 3%; P < 0.01), while MVC increased in Y (+21 ± 5%; P < 0.01) but not O (+6 ± 3%; not significant (NS)). In comparison to Y, O displayed blunted RET-induced increases in muscle thickness (at 3 and 6 weeks, respectively, Y: +8 ± 1% and +11 ± 2%, P < 0.01; O: +2.6 ± 1% and +3.5 ± 2%, NS). While 'basal' longer term MPS was identical between Y and O (∼1.35 ± 0.1% day-1 ), MPS increased in response to RET only in Y (3 weeks, Y: 1.61 ± 0.1% day-1 ; O: 1.49 ± 0.1% day-1 ). Consistent with this, O exhibited inferior ribosomal biogenesis (RNA:DNA ratio and c-MYC induction: Y: +4 ± 2 fold change; O: +1.9 ± 1 fold change), translational efficiency (S6K1 phosphorylation, Y: +10 ± 4 fold change; O: +4 ± 2 fold change) and anabolic hormone milieu (testosterone, Y: 367 ± 19; O: 274 ± 19 ng dl-1 (all P < 0.05). Anabolic resistance is thus multifactorial.


Assuntos
Envelhecimento/fisiologia , Proteínas Musculares/biossíntese , Treinamento Resistido , Ribossomos/metabolismo , Adulto , Idoso , DNA/metabolismo , Humanos , Hipertrofia/metabolismo , Masculino , Biossíntese de Proteínas , Músculo Quadríceps/metabolismo , Músculo Quadríceps/patologia , RNA/metabolismo , Adulto Jovem
18.
FASEB J ; 29(11): 4485-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26169934

RESUMO

Resistance exercise training (RET) is widely used to increase muscle mass in athletes and also aged/cachectic populations. However, the time course and metabolic and molecular control of hypertrophy remain poorly defined. Using newly developed deuterium oxide (D2O)-tracer techniques, we investigated the relationship between long-term muscle protein synthesis (MPS) and hypertrophic responses to RET. A total of 10 men (23 ± 1 yr) undertook 6 wk of unilateral (1-legged) RET [6 × 8 repetitions, 75% 1 repetition maximum (1-RM) 3/wk], rendering 1 leg untrained (UT) and the contralateral, trained (T). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2O (70 atom percentage; thereafter 50 ml/wk) with regular body water monitoring in saliva via high-temperature conversion elemental analyzer:isotope ratio mass spectrometer. Further bilateral VL muscle biopsies were taken at 3 and 6 wk to temporally quantify MPS via gas chromatography:pyrolysis:isotope ratio mass spectrometer. Expectedly, only the T leg exhibited marked increases in function [i.e., 1-RM/maximal voluntary contraction (60°)] and VL thickness (peaking at 3 wk). Critically, whereas MPS remained unchanged in the UT leg (e.g., ∼1.35 ± 0.08%/d), the T leg exhibited increased MPS at 0-3 wk (1.6 ± 0.01%/d), but not at 3-6 wk (1.29 ± 0.11%/d); this was reflected by dampened acute mechanistic target of rapamycin complex 1 signaling responses to RET, beyond 3 wk. Therefore, hypertrophic remodeling is most active during the early stages of RET, reflecting longer-term MPS. Moreover, D2O heralds promise for coupling MPS and muscle mass and providing insight into the control of hypertrophy and efficacy of anabolic interventions.


Assuntos
Adaptação Fisiológica/fisiologia , Óxido de Deutério/farmacocinética , Exercício Físico/fisiologia , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Adulto , Óxido de Deutério/administração & dosagem , Humanos , Hipertrofia/metabolismo , Masculino
19.
Biochem Soc Trans ; 43(6): 1285-95, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26614674

RESUMO

Post-transcriptional control of gene expression is critical for normal cellular function and viability and many of the proteins that mediate post-transcriptional control are themselves subject to regulation by post-translational modification (PTM), e.g. phosphorylation. However, proteome-wide studies are revealing new complexities in the PTM status of mammalian proteins, in particular large numbers of novel methylated and acetylated residues are being identified. Here we review studied examples of methylation/acetylation-dependent regulation of post-transcriptional regulatory protein (PTRP) function and present collated PTM data that points to the huge potential for regulation of mRNA fate by these PTMs.


Assuntos
Citoplasma/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Acetilação , Animais , Citoplasma/genética , Humanos , Lisina/genética , Metilação , Modelos Genéticos , Proteoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Am J Physiol Endocrinol Metab ; 306(5): E571-9, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24381002

RESUMO

Quantification of muscle protein synthesis (MPS) remains a cornerstone for understanding the control of muscle mass. Traditional [(13)C]amino acid tracer methodologies necessitate sustained bed rest and intravenous cannulation(s), restricting studies to ~12 h, and thus cannot holistically inform on diurnal MPS. This limits insight into the regulation of habitual muscle metabolism in health, aging, and disease while querying the utility of tracer techniques to predict the long-term efficacy of anabolic/anticatabolic interventions. We tested the efficacy of the D2O tracer for quantifying MPS over a period not feasible with (13)C tracers and too short to quantify changes in mass. Eight men (22 ± 3.5 yr) undertook one-legged resistance exercise over an 8-day period (4 × 8-10 repetitions, 80% 1RM every 2nd day, to yield "nonexercised" vs. "exercise" leg comparisons), with vastus lateralis biopsies taken bilaterally at 0, 2, 4, and 8 days. After day 0 biopsies, participants consumed a D2O bolus (150 ml, 70 atom%); saliva was collected daily. Fractional synthetic rates (FSRs) of myofibrillar (MyoPS), sarcoplasmic (SPS), and collagen (CPS) protein fractions were measured by GC-pyrolysis-IRMS and TC/EA-IRMS. Body water initially enriched at 0.16-0.24 APE decayed at ~0.009%/day. In the nonexercised leg, MyoPS was 1.45 ± 0.10, 1.47 ± 0.06, and 1.35 ± 0.07%/day at 0-2, 0-4, and 0-8 days, respectively (~0.05-0.06%/h). MyoPS was greater in the exercised leg (0-2 days: 1.97 ± 0.13%/day; 0-4 days: 1.96 ± 0.15%/day, P < 0.01; 0-8 days: 1.79 ± 0.12%/day, P < 0.05). CPS was slower than MyoPS but followed a similar pattern, with the exercised leg tending to yield greater FSRs (0-2 days: 1.14 ± 0.13 vs. 1.45 ± 0.15%/day; 0-4 days: 1.13 ± 0.07%/day vs. 1.47 ± 0.18%/day; 0-8 days: 1.03 ± 0.09%/day vs. 1.40 ± 0.11%/day). SPS remained unchanged. Therefore, D2O has unrivaled utility to quantify day-to-day MPS in humans and inform on short-term changes in anabolism and presumably catabolism alike.


Assuntos
Óxido de Deutério/farmacologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Biossíntese de Proteínas/fisiologia , Adulto , Exercício Físico/fisiologia , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Miofibrilas/metabolismo , Treinamento Resistido
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa