Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 81(1): 4-13, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21883203

RESUMO

1. There is an urgent need to accurately model how environmental change affects the wide-scale functioning of ecosystems, but advances are hindered by a lack of knowledge of how trophic levels are linked across space. It is unclear which theoretical approach to take to improve modelling of such interactions, but evidence is gathering that linking species responses to their functional traits can increase understanding of ecosystem dynamics. Currently, there are no quantitative studies testing how this approach might improve models of multiple, trophically interacting species, at wide spatial scales. 2. Arable weeds play a foundational role in linking food webs, providing resources for many taxa, including carabid beetles that feed on their seeds and weed-associated invertebrate prey. Here, we model associations between weeds and carabids across farmland in Great Britain (GB), to test the hypothesis that wide-scale trophic links between these groups are structured by their species functional traits. 3. A network of c. 250 arable fields, covering four crops and most lowland areas of GB, was sampled for weed, carabid and invertebrate taxa over 3 years. Data sets of these groups were closely matched in time and space, and each contained numerous species with a range of eco-physiological traits. The consistency of trophic linkages between multiple taxa sharing functional traits was tested within multivariate and log-linear models. 4. Robust links were established between the functional traits of taxa and their trophic interactions. Autumn-germinating, small-seeded weeds were associated with smaller, spring-breeding carabids, more specialised in seed feeding, whereas spring-germinating, large-seeded weeds were associated with a range of larger, autumn-breeding omnivorous carabids. These relationships were strong and dynamic, being independent of changes in invertebrate food resources and consistent across sample dates, crops and regions of GB. 5. We conclude that, in at least one system of interacting taxa, functional traits can be used to predict consistent, wide-scale trophic links. This conceptual approach is useful for assessing how perturbations affecting lower trophic levels are ramified throughout ecosystems and could be used to assess how environmental change affects a wider range of secondary consumers.


Assuntos
Biota , Besouros/fisiologia , Produtos Agrícolas/fisiologia , Cadeia Alimentar , Plantas Daninhas/fisiologia , Animais , Preferências Alimentares , Invertebrados/fisiologia , Modelos Biológicos , Plantas Daninhas/anatomia & histologia , Dinâmica Populacional , Reprodução , Estações do Ano , Sementes/anatomia & histologia , Sementes/fisiologia , Especificidade da Espécie , Reino Unido
2.
J Anim Ecol ; 77(2): 265-74, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18031524

RESUMO

1. Understanding the wide-scale processes controlling communities across multiple sites is a foremost challenge of modern ecology. Here, data from a nation-wide network of field sites are used to describe the metacommunity dynamics of arable carabid beetles. This is done by modelling how communities are structured at a local level, by changes in the environment of the sampled fields and, at a regional level, by fitting spatial parameters describing latitudinal and longitudinal gradients. 2. Local and regional processes demonstrated independent and significant capacities for structuring communities. Within the local environment, crop type was found to be the primary determinant of carabid community composition. The regional component included a strong response to a longitudinal gradient, with significant increases in diversity in an east-to-west direction. 3. Carabid metacommunities seem to be structured by a combination of species sorting dynamics, operating at two different, but equally important, spatial scales. At a local scale, species are sorted along a resource gradient determined by crop type. At a wider spatial scale species appear to be sorted along a longitudinal gradient. 4. Nation-wide trends in communities coincided with known gradients of increased homogeneity of habitat mosaics and agricultural intensification. However, more work is required to understand fully how communities are controlled by the interaction of crops with changes in landscape structure at different spatial scales. 5. We conclude that crop type is a powerful determinant of carabid biodiversity, but that it cannot be considered in isolation from other components of the landscape for optimal conservation policy.


Assuntos
Biodiversidade , Besouros/fisiologia , Conservação dos Recursos Naturais , Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Animais , Besouros/crescimento & desenvolvimento , Meio Ambiente , Feminino , Masculino , Dinâmica Populacional , Comportamento Espacial/fisiologia , Especificidade da Espécie , Reino Unido
4.
PLoS One ; 11(3): e0151595, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27007973

RESUMO

Action to reduce anthropogenic impact on the environment and species within it will be most effective when targeted towards activities that have the greatest impact on biodiversity. To do this effectively we need to better understand the relative importance of different activities and how they drive changes in species' populations. Here, we present a novel, flexible framework that reviews evidence for the relative importance of these drivers of change and uses it to explain recent alterations in species' populations. We review drivers of change across four hundred species sampled from a broad range of taxonomic groups in the UK. We found that species' population change (~1970-2012) has been most strongly impacted by intensive management of agricultural land and by climatic change. The impact of the former was primarily deleterious, whereas the impact of climatic change to date has been more mixed. Findings were similar across the three major taxonomic groups assessed (insects, vascular plants and vertebrates). In general, the way a habitat was managed had a greater impact than changes in its extent, which accords with the relatively small changes in the areas occupied by different habitats during our study period, compared to substantial changes in habitat management. Of the drivers classified as conservation measures, low-intensity management of agricultural land and habitat creation had the greatest impact. Our framework could be used to assess the relative importance of drivers at a range of scales to better inform our policy and management decisions. Furthermore, by scoring the quality of evidence, this framework helps us identify research gaps and needs.


Assuntos
Agricultura , Biodiversidade , Mudança Climática , Reino Unido
5.
Proc Biol Sci ; 272(1571): 1497-502, 2005 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-16011925

RESUMO

Responses of key invertebrates within Farm Scale Evaluations (FSEs) of maize reflected advantageous effects for weeds under genetically modified herbicide-tolerant (GMHT) management. Triazine herbicides constitute the main weed control in current conventional systems, but will be withdrawn under future EU guidelines. Here, we reappraise FSE data to predict effects of this withdrawal on invertebrate biodiversity under alternative management scenarios. Invertebrate indicators showed remarkably consistent and sensitive responses to weed abundance. Their numbers were consistently reduced by atrazine used prior to seedling emergence, but at reduced levels compared to similar observations for weeds. Large treatment effects were, therefore, maintained for invertebrates when comparing other conventional herbicide treatments with GMHT, despite reduced differences in weed abundance. In particular, benefits of GMHT remained under comparisons with best estimates of future conventional management without triazines. Pitfall trapped Collembola, seed-feeding carabids and a linyphiid spider followed closely trends for weeds and may, therefore, prove useful for modelling wider biodiversity effects of herbicides. Weaker responses to triazines applied later in the season, at times closer to the activity and capture of invertebrates, suggest an absence of substantial direct effects. Contrary responses for some suction-sampled Collembola and the carabid Loricera pilicornis were probably caused by a direct deleterious effect of triazines.


Assuntos
Biodiversidade , Invertebrados/fisiologia , Zea mays/parasitologia , Análise de Variância , Animais , Interações Hospedeiro-Parasita , Invertebrados/efeitos dos fármacos , Plantas Geneticamente Modificadas , Densidade Demográfica , Triazinas/toxicidade , Reino Unido
6.
Proc Biol Sci ; 272(1562): 463-74, 2005 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-15799941

RESUMO

We evaluated the effects of the herbicide management associated with genetically modified herbicide-tolerant (GMHT) winter oilseed rape (WOSR) on weed and invertebrate abundance and diversity by testing the null hypotheses that there is no difference between the effects of herbicide management of GMHT WOSR and that of comparable conventional varieties. For total weeds, there were few treatment differences between GMHT and conventional cropping, but large and opposite treatment effects were observed for dicots and monocots. In the GMHT treatment, there were fewer dicots and monocots than in conventional crops. At harvest, dicot biomass and seed rain in the GMHT treatment were one-third of that in the conventional, while monocot biomass was threefold greater and monocot seed rain almost fivefold greater in the GMHT treatment than in the conventional. These differential effects persisted into the following two years of the rotation. Bees and Butterflies that forage and select for dicot weeds were less abundant in GMHT WORS management in July. Year totals for Collembola were greater under GMHT management. There were few other treatment effects on invertebrates, despite the marked effects of herbicide management on the weeds.


Assuntos
Brassica napus/genética , Herbicidas/toxicidade , Insetos/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas/efeitos dos fármacos , Agricultura/métodos , Análise de Variância , Animais , Biomassa , Resistência a Medicamentos/genética , Insetos/crescimento & desenvolvimento , Desenvolvimento Vegetal , Dinâmica Populacional , Sementes/efeitos dos fármacos , Reino Unido
7.
Sci Adv ; 1(9): e1400220, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26601276

RESUMO

The responses of animals and plants to recent climate change vary greatly from species to species, but attempts to understand this variation have met with limited success. This has led to concerns that predictions of responses are inherently uncertain because of the complexity of interacting drivers and biotic interactions. However, we show for an exemplar group of 155 Lepidoptera species that about 60% of the variation among species in their abundance trends over the past four decades can be explained by species-specific exposure and sensitivity to climate change. Distribution changes were less well predicted, but nonetheless, up to 53% of the variation was explained. We found that species vary in their overall sensitivity to climate and respond to different components of the climate despite ostensibly experiencing the same climate changes. Hence, species have undergone different levels of population "forcing" (exposure), driving variation among species in their national-scale abundance and distribution trends. We conclude that variation in species' responses to recent climate change may be more predictable than previously recognized.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa