Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 28(6): 1503-1519, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29999562

RESUMO

Ecological forecasting of forest productivity involves integrating observations into a process-based model and propagating the dominant components of uncertainty to generate probability distributions for future states and fluxes. Here, we develop a forecast for the biomass change in loblolly pine (Pinus taeda) forests of the southeastern United States and evaluate the relative contribution of different forms of uncertainty to the total forecast uncertainty. Specifically, we assimilated observations of carbon and flux stocks and fluxes from sites across the region, including global change experiments, into a forest ecosystem model to calibrate the parameter distributions and estimate the process uncertainty (i.e., model structure uncertainty revealed in the residuals of the calibration). Using this calibration, we forecasted the change in biomass within each 12-digit Hydrologic (H12) unit across the native range of loblolly pine between 2010 and 2055 under the Representative Concentration Pathway 8.5 scenario. Averaged across the region, productivity is predicted to increase by a mean of 31% between 2010 and 2055 with an average forecast 95% quantile interval of ±15 percentage units. The largest increases were predicted in cooler locations, corresponding to the largest projected changes in temperature. The forecasted mean change varied considerably among the H12 units (3-80% productivity increase), but only units in the warmest and driest extents of the loblolly pine range had forecast distributions with probabilities of a decline in productivity that exceeded 5%. By isolating the individual components of the forecast uncertainty, we found that ecosystem model process uncertainty made the largest individual contribution. Ecosystem model parameter and climate model uncertainty had similar contributions to the overall forecast uncertainty, but with differing spatial patterns across the study region. The probabilistic framework developed here could be modified to include additional sources of uncertainty, including changes due to fire, insects, and pests: processes that would result in lower productivity changes than forecasted here. Overall, this study presents an ecological forecast at the ecosystem management scale so that land managers can explicitly account for uncertainty in decision analysis. Furthermore, it highlights that future work should focus on quantifying, propagating, and reducing ecosystem model process uncertainty.


Assuntos
Biomassa , Mudança Climática , Florestas , Modelos Teóricos , Pinus taeda/crescimento & desenvolvimento , Previsões , Sudeste dos Estados Unidos , Incerteza
2.
PNAS Nexus ; 2(11): pgad345, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38024401

RESUMO

The forest carbon sink of the United States offsets emissions in other sectors. Recently passed US laws include important climate legislation for wildfire reduction, forest restoration, and forest planting. In this study, we examine how wildfire reduction strategies and planting might alter the forest carbon sink. Our results suggest that wildfire reduction strategies reduce carbon sequestration potential in the near term but provide a longer term benefit. Planting initiatives increase carbon sequestration but at levels that do not offset lost sequestration from wildfire reduction strategies. We conclude that recent legislation may increase near-term carbon emissions due to fuel treatments and reduced wildfire frequency and intensity, and expand long-term US carbon sink strength.

3.
PLoS One ; 15(10): e0240097, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33057344

RESUMO

Future land use projections are needed to inform long-term planning and policy. However, most projections require downscaling into spatially explicit projection rasters for ecosystem service analyses. Empirical demand-allocation algorithms input coarse-level transition quotas and convert cells across the raster, based on a modeled probability surface. Such algorithms typically employ contagious and/or random allocation approaches. We present a hybrid seeding approach designed to generate a stochastic collection of spatial realizations for distributional analysis, by 1) randomly selecting a seed cell from a sample of n cells, then 2) converting patches of neighboring cells based on transition probability and distance to the seed. We generated a collection of realizations from 2001-2011 for the conterminous USA at 90m resolution based on varying the value of n, then computed forest area by fragmentation class and compared the results with observed 2011 forest area by fragmentation class. We found that realizations based on values of n ≤ 256 generally covered observed forest fragmentation at regional scales, for approximately 70% of assessed cases. We also demonstrate the potential of the seeding algorithm for distributional analysis by generating 20 trajectories of realizations from 2020-2070 from a single example scenario. Generating a library of such trajectories from across multiple scenarios will enable analysis of projected patterns and downstream ecosystem services, as well as their variation.


Assuntos
Algoritmos , Conservação dos Recursos Naturais , Previsões , Florestas , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa