Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38717591

RESUMO

PURPOSE: 68Ga-Trivehexin is an investigational PET radiopharmaceutical (NCT05799274) targeting αvß6-integrin for PET imaging of carcinomas. 177Lu-D0301 is a structurally related therapeutic peptide tetramer. However, it showed considerable kidney uptake in rodents, impeding clinical applicability. We therefore evaluated the impact of different kidney protection strategies on the biodistribution of both agents in normal and tumor-bearing mice. METHODS: Ex-vivo biodistribution of 68Ga-Trivehexin (90 min p.i.) and 177Lu-D0301 (90 min and 24 h p.i.) was determined in healthy C57BL/6N and H2009 (human lung adenocarcinoma) xenografted CB17-SCID mice without and with co-infusion of 100 µL of solutions containing 2.5% arginine + 2.5% lysine (Arg/Lys), 4% succinylated gelatin (gelofusine, gelo), or combinations thereof. Arg/Lys was injected either i.p. 30 min before and after the radiopharmaceutical, or i.v. 2 min before the radiopharmaceutical. Gelo was administered either i.v. 2 min prior activity, or pre-mixed and injected together with the radiopharmaceutical (n = 5 per group). C57BL/6N mice were furthermore imaged by PET (90 min p.i.) and SPECT (24 h p.i.). RESULTS: Kidney uptake of 68Ga-Trivehexin in C57BL/6N mice was reduced by 15% (Arg/Lys i.p.), 25% (Arg/Lys i.v.), and 70% (gelo i.v.), 90 min p.i., relative to control. 177Lu-D0301 kidney uptake was reduced by 2% (Arg/Lys i.p.), 41% (Arg/Lys i.v.), 61% (gelo i.v.) and 66% (gelo + Arg/Lys i.v.) 24 h p.i., compared to control. Combination of Arg/Lys and gelo provided no substantial benefit. Gelo furthermore reduced kidney uptake of 177Lu-D0301 by 76% (90 min p.i.) and 85% (24 h p.i.) in H2009 bearing SCID mice. Since tumor uptake was not (90 min p.i.) or only slightly reduced (15%, 24 h p.i.), the tumor/kidney ratio was improved by factors of 3.3 (90 min p.i.) and 2.6 (24 h p.i.). Reduction of kidney uptake was demonstrated by SPECT, which also showed that the remaining activity was located in the cortex. CONCLUSIONS: The kidney uptake of both investigated radiopharmaceuticals was more efficiently reduced by gelofusine (61-85%) than Arg/Lys (25-41%). Gelofusine appears particularly suitable for reducing renal uptake of αvß6-integrin targeted 177Lu-labeled peptide multimers because its application led to approximately three times higher tumor-to-kidney ratios. Since the incidence of severe adverse events (anaphylaxis) with succinylated gelatin products (reportedly 0.0062-0.038%) is comparable to that of gadolinium-based MRI or iodinated CT contrast agents (0.008% and 0.04%, respectively), clinical use of gelofusine during radioligand therapy appears feasible if similar risk management strategies as for contrast agents are applied.

2.
J Nucl Cardiol ; 29(5): 2511-2520, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34341952

RESUMO

BACKGROUND: To evaluate quantitative myocardial perfusion SPECT/CT datasets for routine clinical reporting and the assessment of myocardial tracer uptake in patients with severe TVCAD. METHODS: MPS scans were reconstructed as quantitative SPECT datasets using CTs from internal (SPECT/CT, Q_INT) and external (PET/CT, Q_EXT) sources for attenuation correction. TPD was calculated and compared to the TPD from non-quantitative SPECT datasets of the same patients. SUVmax, SUVpeak, and SUVmean were compared between Q_INT and Q_EXT SPECT datasets. Global SUVmax and SUVpeak were compared between patients with and without TVCAD. RESULTS: Quantitative reconstruction was feasible. TPD showed an excellent correlation between quantitative and non-quantitative SPECT datasets. SUVmax, SUVpeak, and SUVmean showed an excellent correlation between Q_INT and Q_EXT SPECT datasets, though mean SUVmean differed significantly between the two groups. Global SUVmax and SUVpeak were significantly reduced in patients with TVCAD. CONCLUSIONS: Absolute quantification of myocardial tracer uptake is feasible. The method seems to be robust and principally suitable for routine clinical reporting. Quantitative SPECT might become a valuable tool for the assessment of severe coronary artery disease in a setting of balanced ischemia, where potentially life-threatening conditions might otherwise go undetected.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Doença da Artéria Coronariana/diagnóstico por imagem , Humanos , Imagem de Perfusão do Miocárdio/métodos , Perfusão , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada de Emissão de Fóton Único/métodos
3.
J Nucl Med ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960715

RESUMO

Image-based dosimetry-guided radiopharmaceutical therapy has the potential to personalize treatment by limiting toxicity to organs at risk and maximizing the therapeutic effect. The 177Lu dosimetry challenge of the Society of Nuclear Medicine and Molecular Imaging consisted of 5 tasks assessing the variability in the dosimetry workflow. The fifth task investigated the variability associated with the last step, dose conversion, of the dosimetry workflow on which this study is based. Methods: Reference variability was assessed by 2 medical physicists using different software, methods, and all possible combinations of input segmentation formats and time points as provided in the challenge. General descriptive statistics for absorbed dose values from the global submissions from participants were calculated, and variability was measured using the quartile coefficient of dispersion. Results: For the liver, which included lesions with high uptake, variabilities of up to 36% were found. The baseline analysis showed a variability of 29% in absorbed dose results for the liver from datasets where lesions included and excluded were grouped, indicating that variation in how lesions in normal liver were treated was a significant source of variability. For other organs and lesions, variability was within 7%, independently of software used except for the local deposition method. Conclusion: The choice of dosimetry method or software had a small contribution to the overall variability of dose estimates.

4.
EJNMMI Phys ; 11(1): 51, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922372

RESUMO

BACKGROUND: Dosimetry-based personalized therapy was shown to have clinical benefits e.g. in liver selective internal radiation therapy (SIRT). Yet, there is no consensus about its introduction into clinical practice, mainly as Monte Carlo simulations (gold standard for dosimetry) involve massive computation time. We addressed the problem of computation time and tested a patch-based approach for Monte Carlo simulations for internal dosimetry to improve parallelization. We introduce a physics-inspired cropping layout for patch-based MC dosimetry, and compare it to cropping layouts of the literature as well as dosimetry using organ-S-values, and dose kernels, taking whole-body Monte Carlo simulations as ground truth. This was evaluated in five patients receiving Yttrium-90 liver SIRT. RESULTS: The patch-based Monte Carlo approach yielded the closest results to the ground truth, making it a valid alternative to the conventional approach. Our physics-inspired cropping layout and mosaicking scheme yielded a voxel-wise error of < 2% compared to whole-body Monte Carlo in soft tissue, while requiring only ≈  10% of the time. CONCLUSIONS: This work demonstrates the feasibility and accuracy of physics-inspired cropping layouts for patch-based Monte Carlo simulations.

5.
J Nucl Med ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38936975

RESUMO

Internal dosimetry supports safe and effective patient management during radionuclide therapy. Yet, it is associated with high clinical workload, costs, and patient burden, as patient scans at multiple time points (MTPs) must be acquired. Dosimetry based on imaging at a single time point (STP) has continuously gained popularity. However, MTP protocols, used as a reference to judge the validity of STP dosimetry, differ depending on local requirements and deviate from the unknown patient-specific ground truth pharmacokinetics. The aim of this study was to compare the error and optimum time point for different STP approaches using different reference MTP protocols. Methods: Whole-body SPECT/CT scans of 7 patients (7.4-8.9 GBq of [177Lu]Lu-PSMA-I&T) were scheduled at 24, 48, 72, and 168 h after injection. Sixty lesions, 14 kidneys, and 10 submandibular glands were delineated in the SPECT/CT data. Two curve models, that is, a mono- and a biexponential model, were fitted to the MTP data, in accordance with goodness-of-fit analysis (coefficients of variation, sum of squared errors). Three population-based STP approaches were compared: one method published by Hänscheid et al., one by Jackson et al., and one using population-based effective half-lives in the mono- or biexponential curve models. Percentage differences between STP and MTP dosimetry were evaluated. Results: Goodness-of-fit parameters show that a monoexponential function and a biexponential function with shared population-based parameters and physical tail are reasonable reference models. When comparing both reference models, we observed maximum differences of -44%, -19%, and -28% in the estimated absorbed doses for lesions, kidneys, and salivary glands, respectively. STP dosimetry with an average deviation of less than 10% from MTP dosimetry may be feasible; however, this deviation and the optimum imaging time point showed a dependence on the chosen reference protocol. Conclusion: STP dosimetry for [177Lu]Lu-PSMA therapy is promising to boost the integration of dosimetry into clinical routine. According to our patient cohort, 48 h after injection may be regarded as a compromise for STP dosimetry for lesions and at-risk organs. The results from this analysis show that a common gold standard for dosimetry is desirable to allow for reliable and comparable STP dosimetry.

6.
J Nucl Med ; 65(1): 79-84, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37857504

RESUMO

ß-emitting 177Lu targeting prostate-specific membrane antigen (PSMA) is an approved treatment option for metastatic castration-resistant prostate cancer. Data on its long-term nephrotoxicity are sparse. This study aimed to retrospectively evaluate post-177Lu-PSMA estimated glomerular filtration rate (eGFR) dynamics for at least 12 mo in a cohort of metastatic castration-resistant prostate cancer patients. Methods: The institutional databases of 3 German tertiary referral centers identified 106 patients who underwent at least 4 cycles of 177Lu-PSMA and had at least 12 mo of eGFR follow-up data. eGFR (by the Chronic Kidney Disease Epidemiology Collaboration formula) at 3, 6, and 12 mo after 177Lu-PSMA radioligand therapy was estimated using monoexponentially fitted curves through available eGFR data. eGFR changes were grouped (≥15%-<30%, moderate; ≥30%-<40%, severe; and ≥40%, very severe). Associations between eGFR changes (%) and nephrotoxic risk factors, prior treatment lines, and number of 177Lu-PSMA cycles were analyzed using multivariable linear regression. Results: At least moderate eGFR decreases were present in 45% (48/106) of patients; of those, nearly half (23/48) had a severe or very severe eGFR decrease. A higher number of risk factors at baseline (-4.51, P = 0.03) was associated with a greater eGFR decrease. Limitations of the study were the retrospective design, lack of a control group, and limited number of patients with a follow-up longer than 1 y. Conclusion: A considerable proportion of patients may experience moderate or severe decreases in eGFR 1 y from initiation of 177Lu-PSMA. A higher number of risk factors at baseline seems to aggravate loss of renal function. Further prospective trials are warranted to estimate the nephrotoxic potential of 177Lu-PSMA.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/patologia , Antígeno Prostático Específico , Dipeptídeos/efeitos adversos , Lutécio/efeitos adversos , Compostos Heterocíclicos com 1 Anel/efeitos adversos
7.
Theranostics ; 14(9): 3404-3422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948052

RESUMO

Radiopharmaceutical therapy (RPT) is a rapidly developing field of nuclear medicine, with several RPTs already well established in the treatment of several different types of cancers. However, the current approaches to RPTs often follow a somewhat inflexible "one size fits all" paradigm, where patients are administered the same amount of radioactivity per cycle regardless of their individual characteristics and features. This approach fails to consider inter-patient variations in radiopharmacokinetics, radiation biology, and immunological factors, which can significantly impact treatment outcomes. To address this limitation, we propose the development of theranostic digital twins (TDTs) to personalize RPTs based on actual patient data. Our proposed roadmap outlines the steps needed to create and refine TDTs that can optimize radiation dose to tumors while minimizing toxicity to organs at risk. The TDT models incorporate physiologically-based radiopharmacokinetic (PBRPK) models, which are additionally linked to a radiobiological optimizer and an immunological modulator, taking into account factors that influence RPT response. By using TDT models, we envisage the ability to perform virtual clinical trials, selecting therapies towards improved treatment outcomes while minimizing risks associated with secondary effects. This framework could empower practitioners to ultimately develop tailored RPT solutions for subgroups and individual patients, thus improving the precision, accuracy, and efficacy of treatments while minimizing risks to patients. By incorporating TDT models into RPTs, we can pave the way for a new era of precision medicine in cancer treatment.


Assuntos
Neoplasias , Medicina de Precisão , Compostos Radiofarmacêuticos , Humanos , Medicina de Precisão/métodos , Neoplasias/terapia , Neoplasias/radioterapia , Compostos Radiofarmacêuticos/uso terapêutico , Compostos Radiofarmacêuticos/farmacocinética
8.
Nuklearmedizin ; 62(6): 379-388, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37827503

RESUMO

Routine clinical dosimetry along with radiopharmaceutical therapies is key for future treatment personalization. However, dosimetry is considered complex and time-consuming with various challenges amongst the required steps within the dosimetry workflow. The general workflow for image-based dosimetry consists of quantitative imaging, the segmentation of organs and tumors, fitting of the time-activity-curves, and the conversion to absorbed dose. This work reviews the potential and advantages of the use of artificial intelligence to improve speed and accuracy of every single step of the dosimetry workflow.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Compostos Radiofarmacêuticos/uso terapêutico , Radiometria/métodos
9.
J Nucl Med ; 64(7): 1109-1116, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024302

RESUMO

Dosimetry for personalized radiopharmaceutical therapy has gained considerable attention. Many methods, tools, and workflows have been developed to estimate absorbed dose (AD). However, standardization is still required to reduce variability of AD estimates across centers. One effort for standardization is the Society of Nuclear Medicine and Molecular Imaging 177Lu Dosimetry Challenge, which comprised 5 tasks (T1-T5) designed to assess dose estimate variability associated with the imaging protocol (T1 vs. T2 vs. T3), segmentation (T1 vs. T4), time integration (T4 vs. T5), and dose calculation (T5) steps of the dosimetry workflow. The aim of this work was to assess the overall variability in AD calculations for the different tasks. Methods: Anonymized datasets consisting of serial planar and quantitative SPECT/CT scans, organ and lesion contours, and time-integrated activity maps of 2 patients treated with 177Lu-DOTATATE were made available globally for participants to perform dosimetry calculations and submit their results in standardized submission spreadsheets. The data were carefully curated for formal mistakes and methodologic errors. General descriptive statistics for ADs were calculated, and statistical analysis was performed to compare the results of different tasks. Variability in ADs was measured using the quartile coefficient of dispersion. Results: ADs to organs estimated from planar imaging protocols (T2) were lower by about 60% than those from pure SPECT/CT (T1), and the differences were statistically significant. Importantly, the average differences in dose estimates when at least 1 SPECT/CT acquisition was available (T1, T3, T4, T5) were within ±10%, and the differences with respect to T1 were not statistically significant for most organs and lesions. When serial SPECT/CT images were used, the quartile coefficients of dispersion of ADs for organs and lesions were on average less than 20% and 26%, respectively, for T1; 20% and 18%, respectively, for T4 (segmentations provided); and 10% and 5%, respectively, for T5 (segmentation and time-integrated activity images provided). Conclusion: Variability in ADs was reduced as segmentation and time-integration data were provided to participants. Our results suggest that SPECT/CT-based imaging protocols generate more consistent and less variable results than planar imaging methods. Effort at standardizing segmentation and fitting should be made, as this may substantially reduce variability in ADs.


Assuntos
Radiometria , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Radiometria/métodos , Tomografia Computadorizada de Emissão de Fóton Único , Compostos Radiofarmacêuticos/uso terapêutico
10.
J Nucl Med ; 64(5): 767-774, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36657980

RESUMO

Radiopharmaceutical therapies (RPTs) with 177Lu-prostate-specific membrane antigen (PSMA) ligands have demonstrated promising results for the treatment of metastatic castration-resistant prostate cancer. The lack of absorbed-dose-effect relationships currently prevents patient-specific activity personalization. To ease the implementation of dosimetry in the routine clinical workflow for RPT, simplified methods such as single-time-point (STP) instead of multiple-time-point (MTP) imaging protocols are required. This work aimed at assessing differences in the time-integrated activity (TIA) of STP versus MTP image-based dosimetry for 177Lu-PSMA-617 therapy. Methods: Twenty metastatic castration-resistant prostate cancer patients with MTP quantitative 177Lu-SPECT imaging data (∼24, 48, and 72 h post injection (p.i.)) available on first and second 177Lu-PSMA-617 therapy cycles were included in this study. Time-activity curves were fitted for kidneys and lesions to derive effective half-lives and yield a reference TIA. STP approaches involved the formula by Hänscheid (STPH) and a prior-information method (STPprior) that uses the effective half-lives from the first therapy cycle. All time points were considered for the STP approaches. Percentage differences (PDs) in TIA between STP and MTP were compared for the second therapy cycle. Results: Using STPH at 48 h p.i. for kidneys showed a -1.3% ± 5.6% PD from MTP, whereas STPprior showed a PD of 4.6% ± 6.2%. The smallest average PDs for the 56 investigated individual lesions were found using STPprior at 48 h p.i., at only 0.4% ± 14.9%, whereas STPH at 72 h p.i. had a smallest PD of -1.9% ± 14.8%. Conclusion: STP dosimetry for 177Lu-PSMA-617 therapy using a single SPECT/CT scan at 48 or 72 h p.i. is feasible, with a PD of less than ±20% compared with MTP. The validity of both STPH and STPprior has been demonstrated. We believe this finding can increase the adoption of dosimetry and facilitate implementation in routine clinical RPT workflows. Doing so will ultimately enable the finding of dose-effect relationships based on fixed therapy activities that may, in future, allow for absorbed-dose-based RPT activity personalization.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Dipeptídeos/uso terapêutico , Antígeno Prostático Específico , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Lutécio/uso terapêutico
11.
Z Med Phys ; 33(1): 91-102, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36710156

RESUMO

INTRODUCTION: Large datasets are required to ensure reliable non-invasive glioma assessment with radiomics-based machine learning methods. This can often only be achieved by pooling images from different centers. Moreover, trained models should perform with high accuracy when applied to data from different centers. In this study, the impact of reconstruction settings and segmentation methods on radiomic features derived from amino acid and TSPO PET images of glioma patients was examined. Additionally, the ability to model and thus reduce feature differences was investigated. METHODS: [18F]FET and [18F]GE-180 PET data were acquired from 19 glioma patients. For each acquisition, 10 reconstruction settings and 9 segmentation methods were included to emulate multicentric data. Statistical robustness measures were calculated before and after ComBat harmonization. Differences between features due to setting variations were assessed using Friedman test, coefficient of variation (CV) and inter-rater reliability measures, including intraclass and Spearman's rank correlation coefficients and Fleiss' Kappa. RESULTS: According to Friedman analyses, most features (>60%) showed significant differences. Yet, CV and inter-rater reliability measures indicated higher robustness. ComBat resulted in almost complete harmonization (>87%) according to Friedman test and little to no improvement according to CV and inter-rater reliability measures. [18F]GE-180 features were more sensitive to reconstruction settings than [18F]FET features. CONCLUSIONS: According to Friedman test, feature distributions could be successfully aligned using ComBat. However, depending on settings, changes in patient ranks were observed for some features and could not be eliminated by harmonization. Thus, for clinical utilization it is recommended to exclude affected features.


Assuntos
Glioma , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes , Estudos de Viabilidade , Glioma/diagnóstico por imagem , Receptores de GABA
12.
Diagnostics (Basel) ; 13(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37998554

RESUMO

BACKGROUND: PET imaging after yttrium-90 (Y-90) radioembolization is challenging because of the low positron fraction of Y-90 (32 × 10-6). The resulting low number of events can be compensated by the high sensitivity of long axial field-of-view (LAFOV) PET/CT scanners. Nevertheless, the reduced event statistics require optimization of the imaging protocol to achieve high image quality (IQ) and quantification accuracy sufficient for post-treatment dosimetry. METHODS: Two phantoms (NEMA IEC and AbdoMan phantoms, mimicking human liver) filled with Y-90 and a 4:1 sphere (tumor)-to-background ratio were scanned for 24 h with the Biograph Vision Quadra (Siemens Healthineers). Eight patients were scanned after Y-90 radioembolization (1.3-4.7 GBq) using the optimized protocol (obtained by phantom studies). The IQ, contrast recovery coefficients (CRCs) and noise were evaluated for their limited and full acceptance angles, different rebinned scan durations, numbers of iterations and post-reconstruction filters. The s-value-based absorbed doses were calculated to assess their suitability for dosimetry. RESULTS: The phantom studies demonstrate that two iterations, five subsets and a 4 mm Gaussian filter provide a reasonable compromise between a high CRC and low noise. For a 20 min scan duration, an adequate CRC of 56% (vs. 24 h: 62%, 20 mm sphere) was obtained, and the noise was reduced by a factor of 1.4, from 40% to 29%, using the full acceptance angle. The patient scan results were consistent with those from the phantom studies, and the impacts on the absorbed doses were negligible for all of the studied parameter sets, as the maximum percentage difference was -3.89%. CONCLUSIONS: With 2i5s, a 4 mm filter and a scan duration of 20 min, IQ and quantification accuracy that are suitable for post-treatment dosimetry of Y-90 radioembolization can be achieved.

13.
Front Oncol ; 12: 1062592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591527

RESUMO

This work emphasizes that patient data, including images, are not operable (clinically), but that digital twins are. Based on the former, the latter can be created. Subsequently, virtual clinical operations can be performed towards selection of optimal therapies. Digital twins are beginning to emerge in the field of medicine. We suggest that theranostic digital twins (TDTs) are amongst the most natural and feasible flavors of digitals twins. We elaborate on the importance of TDTs in a future where 'one-size-fits-all' therapeutic schemes, as prevalent nowadays, are transcended in radiopharmaceutical therapies (RPTs). Personalized RPTs will be deployed, including optimized intervention parameters. Examples include optimization of injected radioactivities, sites of injection, injection intervals and profiles, and combination therapies. Multi-modal multi-scale images, combined with other data and aided by artificial intelligence (AI) techniques, will be utilized towards routine digital twinning of our patients, and will enable improved deliveries of RPTs and overall healthcare.

14.
PET Clin ; 16(4): 577-596, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34537131

RESUMO

Artificial intelligence (AI) techniques for image-based segmentation have garnered much attention in recent years. Convolutional neural networks have shown impressive results and potential toward fully automated segmentation in medical imaging, and particularly PET imaging. To cope with the limited access to annotated data needed in supervised AI methods, given tedious and prone-to-error manual delineations, semi-supervised and unsupervised AI techniques have also been explored for segmentation of tumors or normal organs in single- and bimodality scans. This work reviews existing AI techniques for segmentation tasks and the evaluation criteria for translational AI-based segmentation efforts toward routine adoption in clinical workflows.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Humanos , Tomografia por Emissão de Pósitrons
15.
PET Clin ; 16(4): 627-641, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34537133

RESUMO

We highlight emerging uses of artificial intelligence (AI) in the field of theranostics, focusing on its significant potential to enable routine and reliable personalization of radiopharmaceutical therapies (RPTs). Personalized RPTs require patient-specific dosimetry calculations accompanying therapy. Additionally we discuss the potential to exploit biological information from diagnostic and therapeutic molecular images to derive biomarkers for absorbed dose and outcome prediction; toward personalization of therapies. We try to motivate the nuclear medicine community to expand and align efforts into making routine and reliable personalization of RPTs a reality.


Assuntos
Medicina Nuclear , Compostos Radiofarmacêuticos , Inteligência Artificial , Humanos , Medicina de Precisão , Radiometria
16.
EJNMMI Phys ; 8(1): 26, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33709253

RESUMO

BACKGROUND: Patients with metastatic, castration-resistant prostate cancer (mCRPC) present with an increased tumor burden in the skeleton. For these patients, Lutetium-177 (Lu-177) radioligand therapy targeting the prostate-specific membrane antigen (PSMA) has gained increasing interest with promising outcome data. Patient-individualized dosimetry enables improvement of therapy success with the aim of minimizing absorbed dose to organs at risk while maximizing absorbed dose to tumors. Different dosimetric approaches with varying complexity and accuracy exist for this purpose. The Medical Internal Radiation Dose (MIRD) formalism applied to tumors assumes a homogeneous activity distribution in a sphere with unit density for derivation of tumor S values (TSV). Voxel S value (VSV) approaches can account for heterogeneous activities but are simulated for a specific tissue. Full patient-individual Monte Carlo (MC) absorbed dose simulation addresses both, heterogeneous activity and density distributions. Subsequent CT-based density weighting has the potential to overcome the assumption of homogeneous density in the MIRD formalism with TSV and VSV methods, which could be a major limitation for the application in bone metastases with heterogeneous density. The aim of this investigation is a comparison of these methods for bone lesion dosimetry in mCRPC patients receiving Lu-177-PSMA therapy. RESULTS: In total, 289 bone lesions in 15 mCRPC patients were analyzed. Percentage difference (PD) of average absorbed dose per lesion compared to MC, averaged over all lesions, was + 14 ± 10% (min: - 21%; max: + 56%) for TSVs. With lesion-individual density weighting using Hounsfield Unit (HU)-to-density conversion on the patient's CT image, PD was reduced to - 8 ± 1% (min: - 10%; max: - 3%). PD on a voxel level for three-dimensional (3D) voxel-wise dosimetry methods, averaged per lesion, revealed large PDs of + 18 ± 11% (min: - 27%; max: + 58%) for a soft tissue VSV approach compared to MC; after voxel-wise density correction, this was reduced to - 5 ± 1% (min: - 12%; max: - 2%). CONCLUSION: Patient-individual MC absorbed dose simulation is capable to account for heterogeneous densities in bone lesions. Since the computational effort prevents its routine clinical application, TSV or VSV dosimetry approaches are used. This study showed the necessity of lesion-individual density weighting for TSV or VSV in Lu-177-PSMA therapy bone lesion dosimetry.

17.
Diagnostics (Basel) ; 11(3)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802417

RESUMO

BACKGROUND: Dosimetry can tailor prostate-specific membrane-antigen-targeted radioligand therapy (PSMA-RLT) for metastatic castration-resistant prostate cancer (mCRPC). However, whole-body tumor dosimetry is challenging in patients with a high tumor burden. We evaluate a simplified index-lesion-based single-photon emission computed tomography (SPECT) dosimetry method in correlation with clinical outcome. METHODS: 30 mCRPC patients were included (median 71 years). The dosimetry was performed for the first cycle using quantitative 177Lu-SPECT. The response was evaluated using RECIST 1.1 and PERCIST criteria, as well as changes in PSMA-positive tumor volume (PSMA-TV) in post-therapy PSMA-PET and biochemical response according to PSA changes after two RLT cycles. RESULTS: Mean tumor doses as well as index-lesion doses were significantly higher in PERCIST responders compared to non-responders (10.2 ± 12.0 Gy/GBq vs. 4.0 ± 2.9 Gy/GBq, p = 0.03 and 13.7 ± 14.2 Gy/GBq vs. 5.9 ± 4.4 Gy/GBq, p = 0.04, respectively). No significant differences in mean tumor and index lesion doses were observed between responders and non-responders according to RECIST 1.1, PSMA-TV, and biochemical response criteria. CONCLUSION: Compared to mean tumor doses on a patient level, single index-lesion-based SPECT dosimetry correlates equally well with the response to PSMA-RLT according to PERCIST criteria and may represent a fast and feasible dosimetry approach for clinical routine.

18.
Cancers (Basel) ; 14(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008218

RESUMO

In this study, dual PET and contrast enhanced MRI were combined to investigate their correlation per voxel in patients at initial diagnosis with suspected glioblastoma. Correlation with contrast enhancement (CE) as an indicator of BBB leakage was further used to evaluate whether PET signal is likely caused by BBB disruption alone, or rather attributable to specific binding after BBB passage. PET images with [18F]GE180 and the amino acid [18F]FET were acquired and normalized to healthy background (tumor-to-background ratio, TBR). Contrast enhanced images were normalized voxel by voxel with the pre-contrast T1-weighted MRI to generate relative CE values (rCE). Voxel-wise analysis revealed a high PET signal even within the sub-volumes without detectable CE. No to moderate correlation of rCE with TBR voxel-values and a small overlap as well as a larger distance of the hotspots delineated in rCE and TBR-PET images were detected. In contrast, voxel-wise correlation between both PET modalities was strong for most patients and hotspots showed a moderate overlap and distance. The high PET signal in tumor sub-volumes without CE observed in voxel-wise analysis as well as the discordant hotspots emphasize the specificity of the PET signals and the relevance of combined differential information from dual PET and MRI images.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa