Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(1): 100695, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101750

RESUMO

In response to genotoxic stress, cells evolved with a complex signaling network referred to as the DNA damage response (DDR). It is now well established that the DDR depends upon various posttranslational modifications; among them, ubiquitylation plays a key regulatory role. Here, we profiled ubiquitylation in response to the DNA alkylating agent methyl methanesulfonate (MMS) in the budding yeast Saccharomyces cerevisiae using quantitative proteomics. To discover new proteins ubiquitylated upon DNA replication stress, we used stable isotope labeling by amino acids in cell culture, followed by an enrichment of ubiquitylated peptides and LC-MS/MS. In total, we identified 1853 ubiquitylated proteins, including 473 proteins that appeared upregulated more than 2-fold in response to MMS treatment. This enabled us to localize 519 ubiquitylation sites potentially regulated upon MMS in 435 proteins. We demonstrated that the overexpression of some of these proteins renders the cells sensitive to MMS. We also assayed the abundance change upon MMS treatment of a selection of yeast nuclear proteins. Several of them were differentially regulated upon MMS treatment. These findings corroborate the important role of ubiquitin-proteasome-mediated degradation in regulating the DDR.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ubiquitinação , Proteínas de Saccharomyces cerevisiae/metabolismo , Dano ao DNA , Reparo do DNA
2.
J Cell Sci ; 133(12)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32409563

RESUMO

Ubiquitylation is a reversible post-translational protein modification that regulates a multitude of cellular processes. Detection of ubiquitylated proteins is often challenging because of their low abundance. Here, we present NUbiCA, a sensitive protein-fragment complementation assay to facilitate the monitoring of ubiquitylation events in cultured cells and model organisms. Using yeast as a model system, we demonstrate that NUbiCA enables accurate monitoring of mono- and polyubiquitylation of proteins expressed at endogenous levels. We also show that it can be applied to decipher the topology of ubiquitin conjugates. Moreover, we assembled a genome-wide collection of yeast strains ready to investigate the ubiquitylation of proteins with this new assay. This resource will facilitate the analysis of local or transient ubiquitylation events that are difficult to detect with current methods.


Assuntos
Processamento de Proteína Pós-Traducional , Ubiquitina , Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
3.
Nature ; 516(7531): 410-3, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25519137

RESUMO

The nuclear envelope is a double membrane that separates the nucleus from the cytoplasm. The inner nuclear membrane (INM) functions in essential nuclear processes including chromatin organization and regulation of gene expression. The outer nuclear membrane is continuous with the endoplasmic reticulum and is the site of membrane protein synthesis. Protein homeostasis in this compartment is ensured by endoplasmic-reticulum-associated protein degradation (ERAD) pathways that in yeast involve the integral membrane E3 ubiquitin ligases Hrd1 and Doa10 operating with the E2 ubiquitin-conjugating enzymes Ubc6 and Ubc7 (refs 2, 3). However, little is known about protein quality control at the INM. Here we describe a protein degradation pathway at the INM in yeast (Saccharomyces cerevisiae) mediated by the Asi complex consisting of the RING domain proteins Asi1 and Asi3 (ref. 4). We report that the Asi complex functions together with the ubiquitin-conjugating enzymes Ubc6 and Ubc7 to degrade soluble and integral membrane proteins. Genetic evidence suggests that the Asi ubiquitin ligase defines a pathway distinct from, but complementary to, ERAD. Using unbiased screening with a novel genome-wide yeast library based on a tandem fluorescent protein timer, we identify more than 50 substrates of the Asi, Hrd1 and Doa10 E3 ubiquitin ligases. We show that the Asi ubiquitin ligase is involved in degradation of mislocalized integral membrane proteins, thus acting to maintain and safeguard the identity of the INM.


Assuntos
Membrana Nuclear/enzimologia , Saccharomyces cerevisiae/enzimologia , Degradação Associada com o Retículo Endoplasmático/fisiologia , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Transporte Proteico/fisiologia , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
5.
Int J Mol Sci ; 14(3): 4400-18, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23439549

RESUMO

Coxsackievirus B3 (CVB3) is an enterovirus of the family of Picornaviridae. The Group B coxsackieviruses include six serotypes (B1 to B6) that cause a variety of human diseases, including myocarditis, meningitis, and diabetes. Among the group B, the B3 strain is mostly studied for its cardiovirulence and its ability to cause acute and persistent infections. Translation initiation of CVB3 RNA has been shown to be mediated by a highly ordered structure of the 5'-untranslated region (5'UTR), which harbors an internal ribosome entry site (IRES). Translation initiation is a complex process in which initiator tRNA, 40S and 60S ribosomal subunits are assembled by eukaryotic initiation factors (eIFs) into an 80S ribosome at the initiation codon of the mRNA. We have previously addressed the question of whether the attenuating mutations of domain V of the poliovirus IRES were specific for a given genomic context or whether they could be transposed and extrapolated to a genomic related virus, i.e., CVB3 wild-type strain. In this context, we have described that Sabin3-like mutation (U473→C) introduced in CVB3 genome led to a defective mutant with a serious reduction in translation efficiency. In this study, we analyzed the efficiency of formation of ribosomal initiation complexes 48S and 80S through 10%-30% and 10%-50% sucrose gradients using rabbit reticulocyte lysates (RRLs) and stage-specific translation inhibitors: 5'-Guanylyl-imidodiphosphate (GMP-PNP) and Cycloheximide (CHX), respectively. We demonstrated that the interaction of 48S and 80S ribosomal complexes within the mutant CVB3 RNA was abolished compared with the wild-type RNA by ribosome assembly analysis. Taken together, it is possible that the mutant RNA was unable to interact with some trans-acting factors critical for enhanced IRES function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa