Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 216(4): 1256-1267, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28892151

RESUMO

Angiosperm diversity has been shaped by mating system evolution, with the most common transition from outcrossing to self-fertilizing. To investigate the genetic basis of this transition, we performed crosses between two species endemic to the Canary Islands, the self-compatible (SC) species Tolpis coronopifolia and its self-incompatible (SI) relative Tolpis santosii. We scored self-compatibility as self-seed set of recombinant plants within two F2 populations. To map and genetically characterize the breakdown of SI, we built a draft genome sequence of T. coronopifolia, genotyped F2 plants using multiplexed shotgun genotyping (MSG), and located MSG markers to the genome sequence. We identified a single quantitative trait locus (QTL) that explains nearly all variation in self-seed set in both F2 populations. To identify putative causal genetic variants within the QTL, we performed transcriptome sequencing on mature floral tissue from both SI and SC species, constructed a transcriptome for each species, and then located each predicted transcript to the T. coronopifolia genome sequence. We annotated each predicted gene within the QTL and found two strong candidates for SI breakdown. Each gene has a coding sequence insertion/deletion mutation within the SC species that produces a truncated protein. Homologs of each gene have been implicated in pollen development, pollen germination, and pollen tube growth in other species.


Assuntos
Asteraceae/genética , Autoincompatibilidade em Angiospermas/genética , Estudos de Associação Genética , Variação Genética , Genoma de Planta , Locos de Características Quantitativas
2.
Curr Opin Plant Biol ; 70: 102298, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36126489

RESUMO

Adaptation to a wide range of environments is a major driver of plant diversity. It is now possible to catalog millions of potential adaptive genomic differences segregating between environments within a plant species in a single experiment. Understanding which of these changes contributes to adaptive phenotypic divergence between plant populations is a major goal of evolutionary biologists and crop breeders. In this review, we briefly highlight the approaches frequently used to understand the genetic basis of adaptive phenotypes in plants, and we discuss some of the limitations of these methods. We propose that direct observation of the process of adaptation using multigenerational studies and whole genome sequencing is a crucial missing component of recent studies of plant adaptation because it complements several shortcomings of sampling-based techniques.


Assuntos
Adaptação Fisiológica , Plantas , Plantas/genética , Adaptação Fisiológica/genética , Evolução Biológica , Genômica , Fenótipo
3.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210208, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35694746

RESUMO

Selfishly evolving centromeres bias their transmission by exploiting the asymmetry of female meiosis and preferentially segregating to the egg. Such female meiotic drive systems have the potential to be supergenes, with multiple linked loci contributing to drive costs or enhancement. Here, we explore the supergene potential of a selfish centromere (D) in Mimulus guttatus, which was discovered in the Iron Mountain (IM) Oregon population. In the nearby Cone Peak population, D is still a large, non-recombining and costly haplotype that recently swept, but shorter haplotypes and mutational variation suggest a distinct population history. We detected D in five additional populations spanning more than 200 km; together, these findings suggest that selfish centromere dynamics are widespread in M. guttatus. Transcriptome comparisons reveal elevated differences in expression between driving and non-driving haplotypes within, but not outside, the drive region, suggesting large-scale cis effects of D's spread on gene expression. We use the expression data to refine linked candidates that may interact with drive, including Nuclear Autoantigenic Sperm Protein (NASPSIM3), which chaperones the centromere-defining histone CenH3 known to modify Mimulus drive. Together, our results show that selfishly evolving centromeres may exhibit supergene behaviour and lay the foundation for future genetic dissection of drive and its costs. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Assuntos
Centrômero , Mimulus , Evolução Biológica , Centrômero/genética , Haplótipos , Meiose , Mimulus/genética
4.
Genetics ; 220(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791192

RESUMO

We measured the floral bud transcriptome of 151 fully sequenced lines of Mimulus guttatus from one natural population. Thousands of single nucleotide polymorphisms (SNPs) are implicated as transcription regulators, but there is a striking difference in the allele frequency spectrum of cis-acting and trans-acting mutations. Cis-SNPs have intermediate frequencies (consistent with balancing selection) while trans-SNPs exhibit a rare-alleles model (consistent with purifying selection). This pattern only becomes clear when transcript variation is normalized on a gene-to-gene basis. If a global normalization is applied, as is typically in RNAseq experiments, asymmetric transcript distributions combined with "rarity disequilibrium" produce a superabundance of false positives for trans-acting SNPs. To explore the cause of purifying selection on trans-acting mutations, we identified gene expression modules as sets of coexpressed genes. The extent to which trans-acting mutations influence modules is a strong predictor of allele frequency. Mutations altering expression of genes with high "connectedness" (those that are highly predictive of the representative module expression value) have the lowest allele frequency. The expression modules can also predict whole-plant traits such as flower size. We find that a substantial portion of the genetic (co)variance among traits can be described as an emergent property of genetic effects on expression modules.


Assuntos
Transcriptoma
5.
Evol Lett ; 6(4): 308-318, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35937470

RESUMO

Selection that acts in a sex-specific manner causes the evolution of sexual dimorphism. Sex-specific phenotypic selection has been demonstrated in many taxa and can be in the same direction in the two sexes (differing only in magnitude), limited to one sex, or in opposing directions (antagonistic). Attempts to detect the signal of sex-specific selection from genomic data have confronted numerous difficulties. These challenges highlight the utility of "direct approaches," in which fitness is predicted from individual genotype within each sex. Here, we directly measured selection on Single Nucleotide Polymorphisms (SNPs) in a natural population of the sexually dimorphic, dioecious plant, Silene latifolia. We measured flowering phenotypes, estimated fitness over one reproductive season, as well as survival to the next year, and genotyped all adults and a subset of their offspring for SNPs across the genome. We found that while phenotypic selection was congruent (fitness covaried similarly with flowering traits in both sexes), SNPs showed clear evidence for sex-specific selection. SNP-level selection was particularly strong in males and may involve an important gametic component (e.g., pollen competition). While the most significant SNPs under selection in males differed from those under selection in females, paternity selection showed a highly polygenic tradeoff with female survival. Alleles that increased male mating success tended to reduce female survival, indicating sexual antagonism at the genomic level. Perhaps most importantly, this experiment demonstrates that selection within natural populations can be strong enough to measure sex-specific fitness effects of individual loci. Males and females typically differ phenotypically, a phenomenon known as sexual dimorphism. These differences arise when selection on males differs from selection on females, either in magnitude or direction. Estimated relationships between traits and fitness indicate that sex-specific selection is widespread, occurring in both plants and animals, and explains why so many species exhibit sexual dimorphism. Finding the specific loci experiencing sex-specific selection is a challenging prospect but one worth undertaking given the extensive evolutionary consequences. Flowering plants with separate sexes are ideal organisms for such studies, given that the fitness of females can be estimated by counting the number of seeds they produce. Determination of fitness for males has been made easier as thousands of genetic markers can now be used to assign paternity to seeds. We undertook just such a study in S. latifolia, a short-lived, herbaceous plant. We identified loci under sex-specific selection in this species and found more loci affecting fitness in males than females. Importantly, loci with major effects on male fitness were distinct from the loci with major effects on females. We detected sexual antagonism only when considering the aggregate effect of many loci. Hence, even though males and females share the same genome, this does not necessarily impose a constraint on their independent evolution.

6.
Evolution ; 74(3): 587-596, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31710100

RESUMO

Most flowering plants are hermaphroditic and experience strong pressures to evolve self-pollination (automatic selection and reproductive assurance). Inbreeding depression (ID) can oppose selection for selfing, but it remains unclear if ID is typically strong enough to maintain outcrossing. To measure the full cost of sustained inbreeding on fitness, and its genomic basis, we planted highly homozygous, fully genome-sequenced inbred lines of yellow monkeyflower (Mimulus guttatus) in the field next to outbred plants from crosses between the same lines. The cost of full homozygosity is severe: 65% for survival and 86% for lifetime seed production. Accounting for the unmeasured effect of lethal and sterile mutations, we estimate that the average fitness of fully inbred genotypes is only 3-4% that of outbred competitors. The genome sequence data provide no indication of simple overdominance, but the number of rare alleles carried by a line, especially within rare allele clusters nonrandomly distributed across the genome, is a significant negative predictor of fitness measurements. These findings are consistent with a deleterious allele model for ID. High variance in rare allele load among lines and the genomic distribution of rare alleles both suggest that migration might be an important source of deleterious alleles to local populations.


Assuntos
Aptidão Genética , Carga Genética , Depressão por Endogamia , Mimulus/genética , Alelos , Genoma de Planta , Endogamia
7.
Mol Ecol Resour ; 20(1): 333-347, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31519042

RESUMO

The estimation of outcrossing rates in hermaphroditic species has been a major focus in the evolutionary study of reproductive strategies, and is also essential for plant breeding and conservation. Surprisingly, genomics has thus far minimally influenced outcrossing rate studies. In this article, we generalize a Bayesian inference method (BORICE) to accommodate genomic data from multiple subpopulations of a species. As an empirical demonstration, BORICE is applied to 115 maternal families of Mimulus guttatus. The analysis shows that low-level whole genome sequencing of parents and offspring is sufficient for individualized mating system estimation: 208 offspring (88.5%) were definitively called as outcrossed, 23 (9.8%) as selfed. After mating system parameters are established (each offspring as outcrossed or selfed and the inbreeding level of maternal plants), BORICE outputs posterior genotype probabilities for each SNP genomewide. Individual SNP calls are often burdened with considerable uncertainty and distilling information from closely linked sites (within genomic windows) can be a useful strategy. For the Mimulus data, principal components based on window statistics were sufficient to diagnose inversion polymorphisms and estimate their effects on spatial structure, phenotypic and fitness measures. More generally, mating system estimation with BORICE can set the stage for population and quantitative genomic analyses, particularly researchers collect phenotypic or fitness data from maternal individuals.


Assuntos
Mimulus/genética , Reprodução , Teorema de Bayes , Evolução Biológica , Genômica , Genótipo , Mimulus/fisiologia , Melhoramento Vegetal
8.
Ecol Evol ; 10(24): 13990-13999, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33391697

RESUMO

Genome-wide genotyping and Bayesian inference method (BORICE) were employed to estimate outcrossing rates and paternity in two small plant populations of Tolpis succulenta (Asteraceae) on Graciosa island in the Azores. These two known extant populations of T. succulenta on Graciosa have recently evolved self-compatibility. Despite the expectation that selfing would occur at an appreciable rate (self-incompatible populations of the same species show low but nonzero selfing), high outcrossing was found in progeny arrays from maternal plants in both populations. This is inconsistent with an immediate transition to high selfing following the breakdown of a genetic incompatibility system. This finding is surprising given the small population sizes and the recent colonization of an island from self-incompatible colonists of T. succulenta from another island in the Azores, and a potential paucity of pollinators, all factors selecting for selfing through reproductive assurance. The self-compatible lineage(s) likely have high inbreeding depression (ID) that effectively halts the evolution of increased selfing, but this remains to be determined. Like their progeny, all maternal plants in both populations are fully outbred, which is consistent with but not proof of high ID. High multiple paternity was found in both populations, which may be due in part to the abundant pollinators observed during the flowering season.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa