Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Pharmacokinet Pharmacodyn ; 49(5): 539-556, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35933452

RESUMO

Physiologically-based pharmacokinetic and cellular kinetic models are used extensively to predict concentration profiles of drugs or adoptively transferred cells in patients and laboratory animals. Models are fit to data by the numerical optimisation of appropriate parameter values. When quantities such as the area under the curve are all that is desired, only a close qualitative fit to data is required. When the biological interpretation of the model that produced the fit is important, an assessment of uncertainties is often also warranted. Often, a goal of fitting PBPK models to data is to estimate parameter values, which can then be used to assess characteristics of the fit system or applied to inform new modelling efforts and extrapolation, to inform a prediction under new conditions. However, the parameters that yield a particular model output may not necessarily be unique, in which case the parameters are said to be unidentifiable. We show that the parameters in three published physiologically-based pharmacokinetic models are practically (deterministically) unidentifiable and that it is challenging to assess the associated parameter uncertainty with simple curve fitting techniques. This result could affect many physiologically-based pharmacokinetic models, and we advocate more widespread use of thorough techniques and analyses to address these issues, such as established Markov Chain Monte Carlo and Bayesian methodologies. Greater handling and reporting of uncertainty and identifiability of fit parameters would directly and positively impact interpretation and translation for physiologically-based model applications, enhancing their capacity to inform new model development efforts and extrapolation in support of future clinical decision-making.


Assuntos
Modelos Biológicos , Animais , Teorema de Bayes , Cadeias de Markov , Método de Monte Carlo , Incerteza
2.
Immunother Adv ; 2(1): ltac017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176591

RESUMO

Drug development typically comprises a combination of pre-clinical experimentation, clinical trials, and statistical data-driven analyses. Therapeutic failure in late-stage clinical development costs the pharmaceutical industry billions of USD per year. Clinical trial simulation represents a key derisking strategy and combining them with mechanistic models allows one to test hypotheses for mechanisms of failure and to improve trial designs. This is illustrated with a T-cell activation model, used to simulate the clinical trials of IMA901, a short-peptide cancer vaccine. Simulation results were consistent with observed outcomes and predicted that responses are limited by peptide off-rates, peptide competition for dendritic cell (DC) binding, and DC migration times. These insights were used to hypothesise alternate trial designs predicted to improve efficacy outcomes. This framework illustrates how mechanistic models can complement clinical, experimental, and data-driven studies to understand, test, and improve trial designs, and how results may differ between humans and mice.

3.
J R Soc Interface ; 18(176): 20201013, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33653113

RESUMO

CAR (Chimeric Antigen Receptor) T cells have demonstrated clinical success for the treatment of multiple lymphomas and leukaemias, but not for various solid tumours, despite promising data from murine models. Lower effective CAR T-cell delivery rates to human solid tumours compared to haematological malignancies in humans and solid tumours in mice might partially explain these divergent outcomes. We used anatomical and physiological data for human and rodent circulatory systems to calculate the typical perfusion of healthy and tumour tissues, and estimated the upper limits of immune cell delivery rates across different organs, tumour types and species. Estimated maximum delivery rates were up to 10 000-fold greater in mice than humans yet reported CAR T-cell doses are typically only 10-100-fold lower in mice, suggesting that the effective delivery rates of CAR T cells into tumours in clinical trials are far lower than in corresponding mouse models. Estimated delivery rates were found to be consistent with published positron emission tomography data. Results suggest that higher effective human doses may be needed to drive efficacy comparable to mouse solid tumour models, and that lower doses should be tested in mice. We posit that quantitation of species and organ-specific delivery and homing of engineered T cells will be key to unlocking their potential for solid tumours.


Assuntos
Imunoterapia Adotiva , Leucemia , Neoplasias , Linfócitos T , Humanos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T
4.
Sci Rep ; 11(1): 16394, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385480

RESUMO

The spleen, a secondary lymphoid tissue (SLT), has an important role in generation of adaptive immune responses. Although splenectomy remains a common procedure, recent studies reported poor prognosis and increased risk of haematological malignancies in asplenic patients. The high baseline trafficking of T lymphocytes to splenic tissue suggests splenectomy may lead to loss of blood-borne malignant immunosurveillance that is not compensated for by the remaining SLT. To date, no quantitative analysis of the impact of splenectomy on the human T cell trafficking dynamics and tissue localisation has been reported. We developed a quantitative computational model that describes organ distribution and trafficking of human lymphocytes to explore the likely impact of splenectomy on immune cell distributions. In silico splenectomy resulted in an average reduction of T cell numbers in SLT by 35% (95%CI 0.12-0.97) and a comparatively lower, 9% (95%CI 0.17-1.43), mean decrease of T cell concentration in SLT. These results suggest that the surveillance capacity of the remaining SLT insufficiently compensates for the absence of the spleen. This may, in part, explain haematological malignancy risk in asplenic patients and raises the question of whether splenectomy has a clinically meaningful impact on patient responses to immunotherapy.


Assuntos
Neoplasias Hematológicas/imunologia , Tecido Linfoide/imunologia , Esplenopatias/imunologia , Linfócitos T/imunologia , Humanos , Linfócitos/imunologia , Baço/imunologia , Esplenectomia/métodos
5.
Nat Commun ; 11(1): 4885, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985503

RESUMO

Parkinson's disease (PD) affects millions of patients worldwide and is characterized by alpha-synuclein aggregation in dopamine neurons. Molecular tweezers have shown high potential as anti-aggregation agents targeting positively charged residues of proteins undergoing amyloidogenic processes. Here we report that the molecular tweezer CLR01 decreased aggregation and toxicity in induced pluripotent stem cell-derived dopaminergic cultures treated with PD brain protein extracts. In microfluidic devices CLR01 reduced alpha-synuclein aggregation in cell somas when axonal terminals were exposed to alpha-synuclein oligomers. We then tested CLR01 in vivo in a humanized alpha-synuclein overexpressing mouse model; mice treated at 12 months of age when motor defects are mild exhibited an improvement in motor defects and a decreased oligomeric alpha-synuclein burden. Finally, CLR01 reduced alpha-synuclein-associated pathology in mice injected with alpha-synuclein aggregates into the striatum or substantia nigra. Taken together, these results highlight CLR01 as a disease-modifying therapy for PD and support further clinical investigation.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/administração & dosagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Organofosfatos/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Substâncias Protetoras/administração & dosagem , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Humanos , Masculino , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Agregados Proteicos/efeitos dos fármacos , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
6.
J R Soc Interface ; 15(140)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29540543

RESUMO

Tumour immunotherapy is dependent upon activation and expansion of tumour-targetting immune cells, known as cytotoxic T-lymphocytes (CTLs). Cancer vaccines developed in the past have had limited success and the mechanisms resulting in failure are not well characterized. To elucidate these mechanisms, we developed a human-parametrized, in silico, agent-based model of vaccination-driven CTL activation within a clinical short-peptide vaccination context. The simulations predict a sharp transition in the probability of CTL activation, which occurs with variation in the separation rate (or off-rate) of tumour-specific immune response-inducing peptides (cognate antigen) from the major histocompatibility class I (MHC-I) receptors of dendritic cells (DCs) originally at the vaccination site. For peptides with MHC-I off-rates beyond this transition, it is predicted that no vaccination strategy will lead to successful expansion of CTLs. For slower off-rates, below the transition, the probability of CTL activation becomes sensitive to the numbers of DCs and T cells that interact subsequent to DC migration to the draining lymph node of the vaccination site. Thus, the off-rate is a key determinant of vaccine design.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Simulação por Computador , Linfonodos/imunologia , Modelos Imunológicos , Peptídeos/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Apresentação de Antígeno , Células Dendríticas/imunologia , Células Dendríticas/patologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Linfonodos/patologia , Linfócitos T Citotóxicos/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa