Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 57(5): 797-811, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25661491

RESUMO

During meiosis, Spo11-induced double-strand breaks (DSBs) are processed into crossovers, ensuring segregation of homologous chromosomes (homologs). Meiotic DSB processing entails 5' end resection and preferred strand exchange with the homolog rather than the sister chromatid (homolog bias). In many organisms, DSBs appear gradually along the genome. Here we report unexpected effects of global DSB levels on local recombination events. Early-occurring, low-abundance "scout" DSBs lack homolog bias. Their resection and interhomolog processing are controlled by the conserved checkpoint proteins Tel1(ATM) kinase and Pch2(TRIP13) ATPase. Processing pathways controlled by Mec1(ATR) kinase take over these functions only above a distinct DSB threshold, resulting in progressive strengthening of the homolog bias. We conclude that Tel1(ATM)/Pch2 and Mec1(ATR) DNA damage response pathways are sequentially activated during wild-type meiosis because of their distinct sensitivities to global DSB levels. Moreover, relative DSB order controls the DSB repair pathway choice and, ultimately, recombination outcome.


Assuntos
Quebras de DNA de Cadeia Dupla , Recombinação Homóloga/genética , Meiose/genética , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Genéticos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
2.
PLoS Genet ; 11(12): e1005653, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26719980

RESUMO

The Eukaryotic RecA-like proteins Rad51 and Dmc1 cooperate during meiosis to promote recombination between homologous chromosomes by repairing programmed DNA double strand breaks (DSBs). Previous studies showed that Rad51 and Dmc1 form partially overlapping co-foci. Here we show these Rad51-Dmc1 co-foci are often arranged in pairs separated by distances of up to 400 nm. Paired co-foci remain prevalent when DSBs are dramatically reduced or when strand exchange or synapsis is blocked. Super-resolution dSTORM microscopy reveals that individual foci observed by conventional light microscopy are often composed of two or more substructures. The data support a model in which the two tracts of ssDNA formed by a single DSB separate from one another by distances of up to 400 nm, with both tracts often bound by one or more short (about 100 nt) Rad51 filaments and also by one or more short Dmc1 filaments.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Meiose , Rad51 Recombinase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Pareamento Cromossômico , DNA de Cadeia Simples , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Rad51 Recombinase/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Troca de Cromátide Irmã
3.
J Biol Chem ; 289(26): 18076-86, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24798326

RESUMO

During meiosis in Saccharomyces cerevisiae, the HOP2 and MND1 genes are essential for recombination. A previous biochemical study has shown that budding yeast Hop2-Mnd1 stimulates the activity of the meiosis-specific strand exchange protein ScDmc1 only 3-fold, whereas analogous studies using mammalian homologs show >30-fold stimulation. The HOP2 gene was recently discovered to contain a second intron that lies near the 3'-end. We show that both HOP2 introns are efficiently spliced during meiosis, forming a predominant transcript that codes for a protein with a C-terminal sequence different from that of the previously studied version of the protein. Using the newly identified HOP2 open reading frame to direct synthesis of wild type Hop2 protein, we show that the Hop2-Mnd1 heterodimer stimulated Dmc1 D-loop activity up to 30-fold, similar to the activity of mammalian Hop2-Mnd1. ScHop2-Mnd1 stimulated ScDmc1 activity in the presence of physiological (micromolar) concentrations of Ca(2+) ions, as long as Mg(2+) was also present at physiological concentrations, leading us to hypothesize that ScDmc1 protomers bind both cations in the active Dmc1 filament. Co-factor requirements and order-of-addition experiments suggested that Hop2-Mnd1-mediated stimulation of Dmc1 involves a process that follows the formation of functional Dmc1-ssDNA filaments. In dramatic contrast to mammalian orthologs, the stimulatory activity of budding yeast Hop2-Mnd1 appeared to be specific to Dmc1; we observed no Hop2-Mnd1-mediated stimulation of the other budding yeast strand exchange protein Rad51. Together, these results support previous genetic experiments indicating that Hop2-Mnd1 specifically stimulates Dmc1 during meiotic recombination in budding yeast.


Assuntos
Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Éxons , Meiose , Dados de Sequência Molecular , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética
4.
BMC Mol Biol ; 11: 97, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21143985

RESUMO

BACKGROUND: Alternative processing of α-thyroid hormone receptor (TRα, NR1A1) mRNAs gives rise to two functionally antagonistic nuclear receptors: TRα1, the α-type receptor, and TRα2, a non-hormone binding variant that is found only in mammals. TRα2 shares an unusual antisense coding overlap with mRNA for Rev-erbα (NR1D1), another nuclear receptor protein. In this study we examine the structure and expression of these genes in the gray short-tailed opossum, Monodelphis domestica, in comparison with that of eutherian mammals and three other marsupial species, Didelphis virginiana, Potorous tridactylus and Macropus eugenii, in order to understand the evolution and regulatory role of this antisense overlap. RESULTS: The sequence, expression and genomic organization of mRNAs encoding TRα1 and Rev-erbα are very similar in the opossum and eutherian mammals. However, the sequence corresponding to the TRα2 coding region appears truncated by almost 100 amino acids. While expression of TRα1 and Rev-erbα was readily detected in all tissues of M. domestica ages 0 days to 18 weeks, TRα2 mRNA was not detected in any tissue or stage examined. These results contrast with the widespread and abundant expression of TRα2 in rodents and other eutherian mammals. To examine requirements for alternative splicing of TRα mRNAs, a series of chimeric minigenes was constructed. Results show that the opossum TRα2-specific 5' splice site sequence is fully competent for splicing but the sequence homologous to the TRα2 3' splice site is not, even though the marsupial sequences are remarkably similar to core splice site elements in rat. CONCLUSIONS: Our results strongly suggest that the variant nuclear receptor isoform, TRα2, is not expressed in marsupials and that the antisense overlap between TRα and Rev-erbα thus is unique to eutherian mammals. Further investigation of the TRα and Rev-erbα genes in marsupial and eutherian species promises to yield additional insight into the physiological function of TRα2 and the role of the associated antisense overlap with Rev-erbα in regulating expression of these genes.


Assuntos
Evolução Molecular , Marsupiais/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores alfa dos Hormônios Tireóideos/genética , Animais , Sequência de Bases , DNA Antissenso/química , DNA Antissenso/metabolismo , Loci Gênicos , Marsupiais/metabolismo , Dados de Sequência Molecular , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/química , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Alinhamento de Sequência , Receptores alfa dos Hormônios Tireóideos/química , Receptores alfa dos Hormônios Tireóideos/metabolismo
5.
J Vis Exp ; (102): e53081, 2015 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-26325523

RESUMO

The small size of nuclei of the budding yeast Saccharomyces cerevisiae limits the utility of light microscopy for analysis of the subnuclear distribution of chromatin-bound proteins. Surface spreading of yeast nuclei results in expansion of chromatin without loss of bound proteins. A method for surface spreading balances fixation of DNA bound proteins with detergent treatment. The method demonstrated is slightly modified from that described by Josef Loidl and Franz Klein. The method has been used to characterize the localization of many chromatin-bound proteins at various stages of the mitotic cell cycle, but is especially useful for the study of meiotic chromosome structures such as meiotic recombinosomes and the synaptonemal complex. We also describe a modification that does not require use of Lipsol, a proprietary detergent, which was called for in the original procedure, but no longer commercially available. An immunostaining protocol that is compatible with the chromosome spreading method is also described.


Assuntos
Cromossomos Fúngicos/química , Técnicas Imunológicas/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Microscopia de Fluorescência/métodos
6.
Cold Spring Harb Perspect Biol ; 7(1): a016659, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25475089

RESUMO

Homology search and DNA strand-exchange reactions are central to homologous recombination in meiosis. During meiosis, these processes are regulated such that the probability of choosing a homolog chromatid as recombination partner is enhanced relative to that of choosing a sister chromatid. This regulatory process occurs as homologous chromosomes pair in preparation for assembly of the synaptonemal complex. Two strand-exchange proteins, Rad51 and Dmc1, cooperate in regulated homology search and strand exchange in most organisms. Here, we summarize studies on the properties of these two proteins and their accessory factors. In addition, we review current models for the assembly of meiotic strand-exchange complexes and the possible mechanisms through which the interhomolog bias of recombination partner choice is achieved.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/fisiologia , Meiose/fisiologia , Modelos Biológicos , Rad51 Recombinase/metabolismo , Recombinases Rec A/metabolismo , Animais , Humanos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa