Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Ano de publicação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915519

RESUMO

Despite their widespread impact on human health there are no approved drugs for combating alphavirus infections. The heterocyclic ß-aminomethyl vinyl sulfone RA-0002034 (1a) is a potent irreversible covalent inhibitor of the alphavirus nsP2 cysteine protease with broad spectrum antiviral activity. Analogs of 1a that varied each of three regions of the molecule were synthesized to establish structure-activity relationships for inhibition of Chikungunya (CHIKV) nsP2 protease and viral replication. The covalent warhead was highly sensitive to modifications of the sulfone or vinyl substituents. However, numerous alterations to the core 5-membered heterocycle and its aryl substituent were well tolerated and several analogs were identified that enhanced CHIKV nsP2 binding. For example, the 4-cyanopyrazole analog 8d exhibited a kinact /Ki ratio >10,000 M-1s-1. 3-Arylisoxazole was identified an isosteric replacement for the 5-membered heterocycle, which circumvented the intramolecular cyclization that complicated the synthesis of pyrazole-based inhibitors like 1a. The accumulated structure-activity data was used to build a ligand-based model of the enzyme active site, which can be used to guide the design of covalent nsP2 protease inhibitors as potential therapeutics against alphaviruses.

2.
RSC Med Chem ; 15(3): 1066-1071, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516600

RESUMO

We have developed a novel chemical handle (PFI-E3H1) and a chemical probe (PFI-7) as ligands for the Gid4 subunit of the human E3 ligase CTLH degradation complex. Through an efficient initial hit-ID campaign, structure-based drug design (SBDD) and leveraging the sizeable Pfizer compound library, we identified a 500 nM ligand for this E3 ligase through file screening alone. Further exploration identified a vector that is tolerant to addition of a linker for future chimeric molecule design. The chemotype was subsequently optimized to sub-100 nM Gid4 binding affinity for a chemical probe. These novel tools, alongside the suitable negative control also identified, should enable the interrogation of this complex human E3 ligase macromolecular assembly.

3.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38562906

RESUMO

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV non-structural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose-response follow up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC 50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a k inact /K I of 6.4 x 10 3 M -1 s -1 . LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the discovery and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for development toward a CHIKV or pan-alphavirus therapeutic. Significance Statement: Chikungunya virus is one of the most prominent and widespread alphaviruses and has caused explosive outbreaks of arthritic disease. Currently, there are no FDA-approved drugs to treat disease caused by chikungunya virus or any other alphavirus-caused infection. Here, we report the discovery of a covalent small molecule inhibitor of chikungunya virus nsP2 protease activity and viral replication of four diverse alphaviruses. This finding highlights the utility of covalent fragment screening for inhibitor discovery and represents a starting point towards the development of alphavirus therapeutics targeting nsP2 protease.

4.
Baltimore; The Johns Hopkins University Press; 2004. 420 p.
Monografia em Inglês | HISA (história da saúde) | ID: his-44298

RESUMO

Livro originado de um seminário que explorou os temas das doenças emergentes, riscos ambientais, ativismo comunitário, saúde pública e responsabilidade institucional. O seminário também incluiu ativistas envolvidos nos esforços para apoiar profissionais de saúde e as comunidades locais afetadas.(AU)


Assuntos
Doenças Transmissíveis Emergentes , Saúde Pública , Política de Saúde , Responsabilidade Legal
5.
Baltimore; The Johns Hopkins University Press; 2004. 420 p.
Monografia em Inglês | LILACS | ID: biblio-1102418

RESUMO

Book originated from a seminar that explored the themes of emerging diseases, environmental risks, community activism, public health and institutional responsibility. The seminar also included activists involved in efforts to support health professionals and affected local communities.


Assuntos
Saúde Pública , Responsabilidade Legal , Doenças Transmissíveis Emergentes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa