Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Drug Metab Dispos ; 51(3): 403-412, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36460476

RESUMO

Bifunctional antibody (BfAb) therapeutics offer the potential for novel functionalities beyond those of the individual monospecific entities. However, combining these entities into a single molecule can have unpredictable effects, including changes in pharmacokinetics that limit the compound's therapeutic profile. A better understanding of how molecular modifications affect in vivo tissue interactions could help inform BfAb design. The present studies were predicated on the observation that a BfAb designed to have minimal off-target interactions cleared from the circulation twice as fast as the monoclonal antibody (mAb) from which it was derived. The present study leverages the spatial and temporal resolution of intravital microscopy (IVM) to identify cellular interactions that may explain the different pharmacokinetics of the two compounds. Disposition studies of mice demonstrated that radiolabeled compounds distributed similarly over the first 24 hours, except that BfAb accumulated approximately two- to -three times more than mAb in the liver. IVM studies of mice demonstrated that both distributed to endosomes of liver endothelia but with different kinetics. Whereas mAb accumulated rapidly within the first hour of administration, BfAb accumulated only modestly during the first hour but continued to accumulate over 24 hours, ultimately reaching levels similar to those of the mAb. Although neither compound was freely filtered by the mouse or rat kidney, BfAb, but not mAb, was found to accumulate over 24 hours in endosomes of proximal tubule cells. These studies demonstrate how IVM can be used as a tool in drug design, revealing unpredicted cellular interactions that are undetectable by conventional analyses. SIGNIFICANCE STATEMENT: Bifunctional antibodies offer novel therapeutic functionalities beyond those of the individual monospecific entities. However, combining these entities into a single molecule can have unpredictable effects, including undesirable changes in pharmacokinetics. Studies of the dynamic distribution of a bifunctional antibody and its parent monoclonal antibody presented here demonstrate how intravital microscopy can expand our understanding of the in vivo disposition of therapeutics, detecting off-target interactions that could not be detected by conventional pharmacokinetics approaches or predicted by conventional physicochemical analyses.


Assuntos
Anticorpos Monoclonais , Fígado , Ratos , Camundongos , Animais , Distribuição Tecidual , Anticorpos Monoclonais/farmacocinética , Fígado/metabolismo , Rim
2.
J Pharmacol Exp Ther ; 382(3): 346-355, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35840338

RESUMO

The benefit of once-weekly basal insulin is less frequent dosing, which has the potential to reduce the barrier to injection therapy and impact patient activation, adherence and compliance, quality of life, and outcomes. Basal Insulin Fc (BIF, LY3209590, or insulin efsitora alfa) is a once-weekly basal insulin in clinical testing for type 1 and type 2 diabetes mellitus. BIF is comprised of a novel single-chain variant of insulin fused to a human IgG2 fragment crystallizable region of an antibody domain using a peptide linker. The in vitro binding affinity of BIF for the human insulin receptor (IR) was two orders of magnitude weaker relative to human insulin. BIF stimulated IR phosphorylation in cells with reduced potency, yet full agonism, and exhibited a significantly faster dephosphorylation kinetic profile than human insulin or AspB10 insulin. BIF stimulated de novo lipogenesis in 3T3-L1 adipocytes and cell proliferation in SAOS-2 and H4IIE cells with ≥70-fold reduction in in vitro potency compared with human insulin. BIF possessed markedly reduced binding to hIGF-1R, making definitive measurements unattainable. In vivo pharmacology studies using streptozotocin-treated diabetic rats demonstrated a significant decrease in blood glucose compared with vehicle-treated animals 24 hours post-injection, persisting through 336 hours following subcutaneous administration. In streptozotocin-treated rats, BIF reached time at maximum concentration at 48 hours and possessed a clearance rate of ∼0.85 ml/h per kg, with a terminal half-life of ∼120 hours following subcutaneous administration. These results demonstrate BIF has an in vitro pharmacological profile similar to native insulin, with significantly reduced potency and an extended time-action profile in vivo that supports once-weekly dosing in humans. SIGNIFICANCE STATEMENT: BIF is a novel basal insulin Fc-fusion protein designed for once-weekly dosing. In this study, we demonstrate that BIF has an in vitro pharmacological profile similar to human insulin, but with weaker potency across assays for IR binding and activity. BIF has a PD and PK profile in STZ-treated rats supportive of weekly dosing in humans.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Insulina/metabolismo , Qualidade de Vida , Ratos , Estreptozocina
3.
Biochemistry ; 58(28): 3116-3132, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31241304

RESUMO

Interest in the development of bi- or multispecific antibody (BsAbs)-based biotherapeutics is growing rapidly due to their inherent ability to interact with many targets simultaneously, thereby potentially protracting their functionality relative to monoclonal antibodies (mAbs). Biophysical property assays have been used to improve the probability of clinical success for various mAb therapeutics; however, there is a paucity of such data for BsAbs. This work evaluates a fusion of an IgG with an isolated protein domain (deemed ECD) and serves to understand how molecular architecture influences biophysical and biochemical properties and, in turn, how these relate to drug disposition. The biophysical characteristics of the molecules (charge, nonspecific binding, FcRn and Fcγ receptor interactions, thermal stability, structure-dynamics, and hydrophobic properties) indicated preferred orientations of ECD and IgG, which supported better pharmacokinetic outcomes. In certain instances, in which ECD-IgG configurations led to suboptimal biophysical behavior in the form of increased hydrophobicity and global ECD instability, drug clearance was found to be increased by ≥2-fold, driven by endothelial cell-based association/clearance mechanisms in the liver, kidneys, and spleen. Improvements in the pharmacokinetic properties were afforded by positional modulation of ECD that was able to bring the disposition characteristics in line with those of the parental mAb. The findings provide some pragmatic, broadly applicable strategies and guidance for the design considerations and evaluation of ECD-BsAb constructs. Additional studies, delineating the precise interactions involved in the clearance of the ECD-BsAb constructs, remain an opportunistic area for improving their in vivo kinetic properties.


Assuntos
Anticorpos Biespecíficos/fisiologia , Anticorpos Biespecíficos/farmacocinética , Fenômenos Biofísicos/fisiologia , Animais , Anticorpos Biespecíficos/química , Fenômenos Biofísicos/efeitos dos fármacos , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/farmacocinética , Fatores Imunológicos/fisiologia , Macaca fascicularis , Masculino , Camundongos , Camundongos Knockout , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
4.
Proc Natl Acad Sci U S A ; 112(5): 1310-5, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25548181

RESUMO

The large discharge of radioactivity into the northwest Pacific Ocean from the 2011 Fukushima Dai-ichi nuclear reactor accident has generated considerable concern about the spread of this material across the ocean to North America. We report here the first systematic study to our knowledge of the transport of the Fukushima marine radioactivity signal to the eastern North Pacific. Time series measurements of (134)Cs and (137)Cs in seawater revealed the initial arrival of the Fukushima signal by ocean current transport at a location 1,500 km west of British Columbia, Canada, in June 2012, about 1.3 y after the accident. By June 2013, the Fukushima signal had spread onto the Canadian continental shelf, and by February 2014, it had increased to a value of 2 Bq/m(3) throughout the upper 150 m of the water column, resulting in an overall doubling of the fallout background from atmospheric nuclear weapons tests. Ocean circulation model estimates that are in reasonable agreement with our measured values indicate that future total levels of (137)Cs (Fukushima-derived plus fallout (137)Cs) off the North American coast will likely attain maximum values in the 3-5 Bq/m(3) range by 2015-2016 before declining to levels closer to the fallout background of about 1 Bq/m(3) by 2021. The increase in (137)Cs levels in the eastern North Pacific from Fukushima inputs will probably return eastern North Pacific concentrations to the fallout levels that prevailed during the 1980s but does not represent a threat to human health or the environment.

5.
Oncotarget ; 8(55): 94619-94634, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212254

RESUMO

Stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 play a critical role in mobilization and redistribution of immune cells and hematopoietic stem cells (HSCs). We evaluated effects of two CXCR4-targeting agents, peptide antagonist LY2510924 and monoclonal antibody LY2624587, on mobilizing HSCs and white blood cells (WBCs) in humans, monkeys, and mice. Biochemical analysis showed LY2510924 peptide blocked SDF-1/CXCR4 binding in all three species; LY2624587 antibody blocked binding in human and monkey, with minimal activity in mouse. Cellular analysis showed LY2624587 antibody, but not LY2510924 peptide, down-regulated cell surface CXCR4 and induced hematological tumor cell death; both agents have been shown to inhibit SDF-1/CXCR4 interaction and downstream signaling. In animal models, LY2510924 peptide induced robust, prolonged, dose- and time-dependent WBC and HSC increases in mice and monkeys, whereas LY2624587 antibody induced only moderate, transient increases in monkeys. In clinical trials, similar pharmacodynamic effects were observed in patients with advanced cancer: LY2510924 peptide induced sustained WBC and HSC increases, while LY2624587 antibody induced only minimal, transient WBC changes. These distinct pharmacodynamic effects in two different classes of CXCR4 inhibitors are clinically important and should be carefully considered when designing combination studies with immune checkpoint inhibitors or other agents for cancer therapy.

6.
MAbs ; 5(2): 288-96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23396084

RESUMO

The aim of this work was to develop and characterize an ELISA to measure free ligand concentrations in rat serum in the presence of a Fab to the same ligand. A variety of experiments were conducted to understand optimal assay conditions and to verify that only free ligand was detected. The parameters explored included sample incubation time on plate, the initial concentrations of Fab and ligand, and the pre-incubation time required for the Fab-ligand complex concentrations to reach equilibrium. We found the optimal experimental conditions to include a 10-minute on-plate incubation of ligand-containing samples, with a 24-hour pre-incubation time for test samples of Fab and ligand to reach equilibrium. An alternative approach, involving removal of Fab-ligand complexes from the solution prior to measuring concentrations of the ligand, was also used to verify that the assay only measured free ligand. Rats were dosed subcutaneously with Fab and the assay was used to demonstrate dose-dependent suppression of endogenous free ligand levels in vivo.


Assuntos
Fragmentos Fab das Imunoglobulinas/sangue , Fragmentos Fab das Imunoglobulinas/imunologia , Ligantes , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/normas , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Cinética , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
J Infect Dis ; 187(3): 513-7, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12552438

RESUMO

The ability of 17 recombinant mycobacterial proteins, native antigen 85 complex, lipoarabinomannan (LAM), and Mycobacterium tuberculosis lysate to detect antibody responses induced by bacille Calmette-Guérin (BCG) vaccination and active tuberculosis infection were studied in enzyme-linked immunosorbent assays. Only LAM-reactive serum immunoglobulin G responses were significantly increased in both BCG-vaccinated patients and patients with active tuberculosis (P<.05), and oral BCG vaccination also induced significant increases in LAM-reactive secretory immunoglobulin A (P<.05). LAM-reactive antibody assays can serve as markers of humoral and mucosal immunity in future trials of BCG and newer attenuated mycobacterial vaccines.


Assuntos
Vacina BCG/imunologia , Imunoglobulina A/imunologia , Lipopolissacarídeos/imunologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vacinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa