Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 194, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097742

RESUMO

Chronic neuroinflammation and microglial activation are key mediators of the secondary injury cascades and cognitive impairment that follow exposure to repetitive mild traumatic brain injury (r-mTBI). Peroxisome proliferator-activated receptor-γ (PPARγ) is expressed on microglia and brain resident myeloid cell types and their signaling plays a major anti-inflammatory role in modulating microglial responses. At chronic timepoints following injury, constitutive PPARγ signaling is thought to be dysregulated, thus releasing the inhibitory brakes on chronically activated microglia. Increasing evidence suggests that thiazolidinediones (TZDs), a class of compounds approved from the treatment of diabetes mellitus, effectively reduce neuroinflammation and chronic microglial activation by activating the peroxisome proliferator-activated receptor-γ (PPARγ). The present study used a closed-head r-mTBI model to investigate the influence of the TZD Pioglitazone on cognitive function and neuroinflammation in the aftermath of r-mTBI exposure. We revealed that Pioglitazone treatment attenuated spatial learning and memory impairments at 6 months post-injury and reduced the expression of reactive microglia and astrocyte markers in the cortex, hippocampus, and corpus callosum. We then examined whether Pioglitazone treatment altered inflammatory signaling mechanisms in isolated microglia and confirmed downregulation of proinflammatory transcription factors and cytokine levels. To further investigate microglial-specific mechanisms underlying PPARγ-mediated neuroprotection, we generated a novel tamoxifen-inducible microglial-specific PPARγ overexpression mouse line and examined its influence on microglial phenotype following injury. Using RNA sequencing, we revealed that PPARγ overexpression ameliorates microglial activation, promotes the activation of pathways associated with wound healing and tissue repair (such as: IL10, IL4 and NGF pathways), and inhibits the adoption of a disease-associated microglia-like (DAM-like) phenotype. This study provides insight into the role of PPARγ as a critical regulator of the neuroinflammatory cascade that follows r-mTBI in mice and demonstrates that the use of PPARγ agonists such as Pioglitazone and newer generation TZDs hold strong therapeutic potential to prevent the chronic neurodegenerative sequelae of r-mTBI.


Assuntos
Disfunção Cognitiva , Microglia , PPAR gama , Pioglitazona , Animais , Masculino , Camundongos , Concussão Encefálica/metabolismo , Concussão Encefálica/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico , PPAR gama/metabolismo
2.
J Neuroinflammation ; 21(1): 130, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750510

RESUMO

Epidemiological studies have unveiled a robust link between exposure to repetitive mild traumatic brain injury (r-mTBI) and elevated susceptibility to develop neurodegenerative disorders, notably chronic traumatic encephalopathy (CTE). The pathogenic lesion in CTE cases is characterized by the accumulation of hyperphosphorylated tau in neurons around small cerebral blood vessels which can be accompanied by astrocytes that contain phosphorylated tau, the latter termed tau astrogliopathy. However, the contribution of tau astrogliopathy to the pathobiology and functional consequences of r-mTBI/CTE or whether it is merely a consequence of aging remains unclear. We addressed these pivotal questions by utilizing a mouse model harboring tau-bearing astrocytes, GFAPP301L mice, subjected to our r-mTBI paradigm. Despite the fact that r-mTBI did not exacerbate tau astrogliopathy or general tauopathy, it increased phosphorylated tau in the area underneath the impact site. Additionally, gene ontology analysis of tau-bearing astrocytes following r-mTBI revealed profound alterations in key biological processes including immunological and mitochondrial bioenergetics. Moreover, gene array analysis of microdissected astrocytes accrued from stage IV CTE human brains revealed an immunosuppressed astroglial phenotype similar to tau-bearing astrocytes in the GFAPP301L model. Additionally, hippocampal reduction of proteins involved in water transport (AQP4) and glutamate homeostasis (GLT1) was found in the mouse model of tau astrogliopathy. Collectively, these findings reveal the importance of understanding tau astrogliopathy and its role in astroglial pathobiology under normal circumstances and following r-mTBI. The identified mechanisms using this GFAPP301L model may suggest targets for therapeutic interventions in r-mTBI pathogenesis in the context of CTE.


Assuntos
Aquaporina 4 , Astrócitos , Transportador 2 de Aminoácido Excitatório , Camundongos Transgênicos , Tauopatias , Proteínas tau , Animais , Humanos , Masculino , Camundongos , Aquaporina 4/metabolismo , Aquaporina 4/genética , Astrócitos/metabolismo , Astrócitos/patologia , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/biossíntese , Camundongos Endogâmicos C57BL , Fenótipo , Proteínas tau/metabolismo , Proteínas tau/genética , Tauopatias/metabolismo , Tauopatias/patologia , Tauopatias/genética
3.
Mol Cell Neurosci ; 125: 103855, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084991

RESUMO

Traumatic brain injury is a leading cause of morbidity and mortality in adults and children in developed nations. Following the primary injury, microglia, the resident innate immune cells of the CNS, initiate several inflammatory signaling cascades and pathophysiological responses that may persist chronically; chronic neuroinflammation following TBI has been closely linked to the development of neurodegeneration and neurological dysfunction. Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that have been shown to regulate several key mechanisms in the inflammatory response to TBI. Increasing evidence has shown that the modulation of the PI3K/AKT signaling pathway has the potential to influence the cellular response to inflammatory stimuli. However, directly targeting PI3K signaling poses several challenges due to its regulatory role in several cell survival pathways. We have previously identified that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN), the major negative regulator of PI3K/AKT signaling, is dysregulated following exposure to repetitive mild traumatic brain injury (r-mTBI). Moreover, this dysregulated PI3K/AKT signaling was correlated with chronic microglial-mediated neuroinflammation. Therefore, we interrogated microglial-specific PTEN as a therapeutic target in TBI by generating a microglial-specific, Tamoxifen inducible conditional PTEN knockout model using a CX3CR1 Cre recombinase mouse line PTENfl/fl/CX3CR1+/CreERT2 (mcg-PTENcKO), and exposed them to our 20-hit r-mTBI paradigm. Animals were treated with tamoxifen at 76 days post-last injury, and the effects of microglia PTEN deletion on immune-inflammatory responses were assessed at 90-days post last injury. We observed that the deletion of microglial PTEN ameliorated the proinflammatory response to repetitive brain trauma, not only reducing chronic microglial activation and proinflammatory cytokine production but also rescuing TBI-induced reactive astrogliosis, demonstrating that these effects extended beyond microglia alone. Additionally, we observed that the pharmacological inhibition of PTEN with BpV(HOpic) ameliorated the LPS-induced activation of microglial NFκB signaling in vitro. Together, these data provide support for the role of PTEN as a regulator of chronic neuroinflammation following repetitive mild TBI.


Assuntos
Lesões Encefálicas Traumáticas , Microglia , Animais , Camundongos , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças Neuroinflamatórias , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Mol Ther Methods Clin Dev ; 29: 303-318, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37359418

RESUMO

Traumatic optic neuropathy (TON) is a condition in which acute injury to the optic nerve from direct or indirect trauma results in vision loss. The most common cause of TON is indirect injury to the optic nerve caused by concussive forces that are transmitted to the optic nerve. TON occurs in up to 5% of closed-head trauma patients and there is currently no known effective treatment. One potential treatment option for TON is ST266, a cell-free biological solution containing the secretome of amnion-derived multipotent progenitor (AMP) cells. We investigated the efficacy of intranasal ST266 in a mouse model of TON induced by blunt head trauma. Injured mice treated with a 10-day regimen of ST266 showed an improvement in spatial memory and learning, a significant preservation of retinal ganglion cells, and a decrease in neuropathological markers in the optic nerve, optic tract, and dorsal lateral geniculate nucleus. ST266 treatment effectively downregulated the NLRP3 inflammasome-mediated neuroinflammation pathway after blunt trauma. Overall, treatment with ST266 was shown to improve functional and pathological outcomes in a mouse model of TON, warranting future exploration of ST266 as a cell-free therapeutic candidate for testing in all optic neuropathies.

5.
Acta Neuropathol Commun ; 10(1): 147, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258255

RESUMO

Chemical and pharmaceutical exposures have been associated with the development of Gulf War Illness (GWI), but how these factors interact with the pathophysiology of traumatic brain injury (TBI) remains an area of study that has received little attention thus far. We studied the effects of pyridostigmine bromide (an anti-nerve agent) and permethrin (a pesticide) exposure in a mouse model of repetitive mild TBI (r-mTBI), with 5 impacts over a 9-day period, followed by Gulf War (GW) toxicant exposure for 10 days beginning 30 days after the last head injury. We then assessed the chronic behavioral and pathological sequelae 5 months after GW agent exposure. We observed that r-mTBI and GWI cumulatively affect the spatial memory of mice in the Barnes maze and result in a shift of search strategies employed by r-mTBI/GW exposed mice. GW exposure also produced anxiety-like behavior in sham animals, but r-mTBI produced disinhibition in both the vehicle and GW treated mice. Pathologically, GW exposure worsened r-mTBI dependent axonal degeneration and neuroinflammation, increased oligodendrocyte cell counts, and increased r-mTBI dependent phosphorylated tau, which was found to colocalize with oligodendrocytes in the corpus callosum. These results suggest that GW exposures may worsen TBI-related deficits. Veterans with a history of both GW chemical exposures as well as TBI may be at higher risk for worse symptoms and outcomes. Subsequent exposure to various toxic substances can influence the chronic nature of mTBI and should be considered as an etiological factor influencing mTBI recovery.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Praguicidas , Camundongos , Animais , Guerra do Golfo , Concussão Encefálica/complicações , Brometo de Piridostigmina/toxicidade , Permetrina/toxicidade , Modelos Animais de Doenças , Preparações Farmacêuticas
6.
Sci Rep ; 11(1): 7900, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846461

RESUMO

To date, an overwhelming number of preclinical studies have addressed acute treatment in mild TBI (mTBI) and repetitive mTBI (r-mTBI), whereas, in humans, there often exists a significant time gap between the injury and the first medical intervention. Our study focused on a delayed treatment with anatabine, an anti-inflammatory compound, in hTau mice using two different models of r-mTBI. The rationale for using two models of the same impact but different frequencies (5 hit mTBI over 9 days and 24 hit mTBI over 90 days) was chosen to address the heterogeneity of r-mTBI in clinical population. Following the last injury in each model, three months elapsed before the initiation of treatment. Anatabine was administered in drinking water for 3 months thereafter. Our data demonstrated that a 3-month delayed treatment with anatabine mitigated astrogliosis in both TBI paradigms but improved cognitive functions only in more-frequently-injured mice (24 hit mTBI). We also found that anatabine decreased the phosphorylation of tau protein and NFκB, which were increased after r-mTBI in both models. The ability of anatabine to suppress these mechanisms suggests that delayed treatment can be effective for clinical population of r-mTBI. The discrepancy between the two models with regard to changes in cognitive performance suggests that r-mTBI heterogeneity may influence treatment efficiency and should be considered in therapeutic development.


Assuntos
Alcaloides/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Piridinas/uso terapêutico , Proteínas tau/metabolismo , Alcaloides/farmacologia , Animais , Córtex Cerebral/patologia , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Masculino , Memória/efeitos dos fármacos , Camundongos Transgênicos , Modelos Biológicos , Atividade Motora/efeitos dos fármacos , NF-kappa B/metabolismo , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
7.
Acta Neuropathol Commun ; 8(1): 166, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076989

RESUMO

Repeated exposure to mild TBI (mTBI) has been linked to an increased risk of Alzheimer's disease (AD), chronic traumatic encephalopathy (CTE) and other neurodegenerative diseases. Some pathological features typically observed in AD have been found in postmortem brains of TBI and CTE, hence treatments tested for AD have a potential to be effective against r-mTBI outcomes. Neuroinflammation may present a possible answer due to its central role both in acute brain injury and in chronic degenerative-like disorders. Our previous studies have shown that drug nilvadipine, acting as an inhibitor of spleen tyrosine kinase (SYK), is effective at reducing inflammation, tau hyperphosphorylation and amyloid production in AD mouse models. To demonstrate the effect of nilvadipine in the absence of age-related variables, we introduced the same treatment to young r-mTBI mice. We further investigate therapeutic mechanisms of nilvadipine using its racemic properties. Both enantiomers, (+)-nilvadipine and (-)-nilvadipine, can lower SYK activity, whereas (+)-nilvadipine is also a potent L-type calcium channel blocker (CCB) and shown to be anti-hypertensive. All r-mTBI mice exhibited increased neuroinflammation and impaired cognitive performance and motor functions. Treatment with racemic nilvadipine mitigated the TBI-induced inflammatory response and significantly improved spatial memory, whereas (-)-enantiomer decreased microgliosis and improved spatial memory but failed to reduce the astroglial response to as much as the racemate. These results suggest the therapeutic potential of SYK inhibition that is enhanced when combined with the CCB effect, which indicate a therapeutic advantage of multi-action drugs for r-mTBI.


Assuntos
Concussão Encefálica/fisiopatologia , Bloqueadores dos Canais de Cálcio/farmacologia , Nifedipino/análogos & derivados , Aprendizagem Espacial/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Quinase Syk/antagonistas & inibidores , Animais , Antígenos CD/efeitos dos fármacos , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/efeitos dos fármacos , Antígenos de Diferenciação Mielomonocítica/metabolismo , Concussão Encefálica/metabolismo , Concussão Encefálica/psicologia , Proteínas de Ligação ao Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Glial Fibrilar Ácida/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/metabolismo , Camundongos , Proteínas dos Microfilamentos/efeitos dos fármacos , Proteínas dos Microfilamentos/metabolismo , Nifedipino/farmacologia , Fosforilação , Teste de Desempenho do Rota-Rod , Aprendizagem Espacial/fisiologia , Memória Espacial/fisiologia , Quinase Syk/efeitos dos fármacos , Quinase Syk/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa