Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Nature ; 599(7884): 229-233, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759362

RESUMO

Inspired by living organisms, soft robots are developed from intrinsically compliant materials, enabling continuous motions that mimic animal and vegetal movement1. In soft robots, the canonical hinges and bolts are replaced by elastomers assembled into actuators programmed to change shape following the application of stimuli, for example pneumatic inflation2-5. The morphing information is typically directly embedded within the shape of these actuators, whose assembly is facilitated by recent advances in rapid prototyping techniques6-11. Yet, these manufacturing processes have limitations in scalability, design flexibility and robustness. Here we demonstrate a new all-in-one methodology for the fabrication and the programming of soft machines. Instead of relying on the assembly of individual parts, our approach harnesses interfacial flows in elastomers that progressively cure to robustly produce monolithic pneumatic actuators whose shape can easily be tailored to suit applications ranging from artificial muscles to grippers. We rationalize the fluid mechanics at play in the assembly of our actuators and model their subsequent morphing. We leverage this quantitative knowledge to program these soft machines and produce complex functionalities, for example sequential motion obtained from a monotonic stimulus. We expect that the flexibility, robustness and predictive nature of our methodology will accelerate the proliferation of soft robotics by enabling the assembly of complex actuators, for example long, tortuous or vascular structures, thereby paving the way towards new functionalities stemming from geometric and material nonlinearities.


Assuntos
Robótica/instrumentação , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Polivinil/síntese química , Polivinil/química , Elastômeros de Silicone/síntese química , Elastômeros de Silicone/química , Siloxanas/síntese química , Siloxanas/química
2.
Nature ; 628(8008): 508-509, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570649
3.
Nature ; 575(7783): 464-467, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31748724

RESUMO

Gamma-ray bursts (GRBs) are brief flashes of γ-rays and are considered to be the most energetic explosive phenomena in the Universe1. The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed2. GRBs typically emit most of their energy via γ-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments3. However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elusive4. Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow-ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and γ-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.

4.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33619177

RESUMO

The concomitant mechanical deformation and solidification of melts are relevant to a broad range of phenomena. Examples include the preparation of cotton candy, the atomization of metals, the manufacture of glass fibers, and the formation of elongated structures in volcanic eruptions known as Pele's hair. Usually, solid-like deformations during solidification are neglected as the melt is much more malleable in its initial liquid-like form. Here we demonstrate how elastic deformations in the midst of solidification, i.e., while the melt responds as a very soft solid ([Formula: see text] Pa), can lead to the formation of previously unknown periodic structures. Namely, we generate an array of droplets on a thin layer of liquid elastomer melt coated on the outside of a rotating cylinder through the Rayleigh-Taylor instability. Then, as the melt cures and goes through its gelation point, the rotation speed is increased and the drops stretch into hairs. The ongoing solidification eventually hardens the material, permanently "freezing" these elastic deformations into a patterned solid. Using experiments, simulation, and theory, we demonstrate that the formation of our two-step patterns can be rationalized when combining the tools from fluid mechanics, elasticity, and statistics. Our study therefore provides a framework to analyze multistep pattern formation processes and harness them to assemble complex materials.

5.
Phys Rev Lett ; 130(12): 128201, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027871

RESUMO

Deployable structures capable of significant geometric reconfigurations are ubiquitous in nature. While engineering contraptions typically comprise articulated rigid elements, soft structures that experience material growth for deployment mostly remain the handiwork of biology, e.g., when winged insects deploy their wings during metamorphosis. Here we perform experiments and develop formal models to rationalize the previously unexplored physics of soft deployable structures using core-shell inflatables. We first derive a Maxwell construction to model the expansion of a hyperelastic cylindrical core constrained by a rigid shell. Based on these results, we identify a strategy to obtain synchronized deployment in soft networks. We then show that a single actuated element behaves as an elastic beam with a pressure-dependent bending stiffness which allows us to model complex deployed networks and demonstrate the ability to reconfigure their final shape. Finally, we generalize our results to obtain three-dimensional elastic gridshells, demonstrating our approach's applicability to assemble complex structures using core-shell inflatables as building blocks. Our results leverage material and geometric nonlinearities to create a low-energy pathway to growth and reconfiguration for soft deployable structures.

6.
Proc Natl Acad Sci U S A ; 116(46): 22966-22971, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659022

RESUMO

We study the droplet-forming instability of a thin jet extruded from a nozzle moving horizontally below the surface of an isoviscous immiscible fluid bath. While this interfacial instability is a classic problem in fluid mechanics, it has never been studied in the context of the deposition of a thread into a reservoir, an open-sky version of microfluidics. As the nozzle translates through the reservoir, drops may form at the nozzle (dripping) or further downstream (jetting). We first focus on rectilinear printing paths and derive a scaling law to rationalize the transition between dripping and jetting. We then leverage the flexibility of our system and study the dynamics of breakup when printing sinusoidal paths. We unravel a methodology to control both the size of the drops formed by the instability and the distance that separates them.

7.
Phys Rev Lett ; 127(4): 044503, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355965

RESUMO

Pendant drops suspended on the underside of a wet substrate are known to accumulate fluid from the surrounding thin liquid film, a process that often results in dripping. The growth of such drops is hastened by their ability to translate over an otherwise uniform horizontal film. Here we show that this scenario is surprisingly reversed when the substrate is slightly tilted (≈2°); drops become too fast to grow and shrink over the course of their motion. Combining experiments and numerical simulations, we rationalize the transition between the conventional growth regime and the previously unknown decay regime we report. Using an analytical treatment of the Landau-Levich meniscus that connects the drop to the film, we quantitatively predict the drop dynamics in the two flow regimes and the value of the critical inclination angle where the transition between them occurs.

8.
Soft Matter ; 16(12): 3137-3142, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32159541

RESUMO

In recent years the research community has paid significant attention to geometrically engineered materials. These materials derive their unique properties from their structure rather than their chemistry alone. Despite their success in the laboratory, the assembly of such soft functional materials remains an outstanding challenge. Here, we propose a robust fluid-mediated route for the rapid fabrication of soft elastomers architected with liquid inclusions. Our approach consists of depositing water drops at the surface of an immiscible liquid elastomer bath. As the elastomer cures, the drops are encapsulated in the polymer and impart shape and function to the newly formed elastic matrix. Using the framework of fluid mechanics, we show how this type of composite material can be tailored.

9.
Phys Rev Lett ; 123(16): 168002, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31702357

RESUMO

Inserting a rigid object into a soft elastic tube produces conformal contact between the two, resulting in contact lines. The curvature of the tube walls near these contact lines is often large and is typically regularized by the finite bending rigidity of the tube. Here, it is demonstrated using experiments and a Föppl-von Kármán-like theory that a second, independent, mechanism of curvature regularization occurs when the tube is axially stretched. In contrast with the effects of finite bending rigidity, the radius of curvature obtained increases with the applied stretching force and decreases with sheet thickness. The dependence of the curvature on a suitably rescaled stretching force is found to be universal, independent of the shape of the intruder, and results from an interplay between the longitudinal stresses due to the applied stretch and hoop stresses characteristic of curved geometry. These results suggest that curvature measurements can be used to infer the mechanical properties of stretched tubular structures.

10.
Soft Matter ; 15(6): 1405-1412, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30648719

RESUMO

We study the wrinkle patterns obtained when applying a thin polymeric film on a uniaxially prestretched soft foundation. The film is coated onto a substrate where it drains under the action of gravity, thereby introducing a continuous variation in its thickness. We first study the fluid mechanics component of the problem and derive the coating profile as a function of the curing properties of the polymeric solution. Upon polymerization, the prestretch is released and yields the formation of wrinkles, which are arranged in organized patterns, including fractals. We study a variety of scenarios depending on the relative orientation of the gradient of film thickness and the stretching direction. In particular, we characterize and rationalize the distribution of singular events in our problem where wrinkles merge to allow a variation of the average value of the wrinkle wavelength across the sample.

11.
Soft Matter ; 15(28): 5728-5738, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31267114

RESUMO

Type I collagen self-assembles into three-dimensional (3D) fibrous networks. These dynamic viscoelastic materials can be remodeled in response to mechanical and chemical signals to form anisotropic networks, the structure of which influences tissue development, homeostasis, and disease progression. Conventional approaches for fabricating anisotropic networks of type I collagen are often limited to unidirectional fiber alignment over small areas. Here, we describe a new approach for engineering cell-laden networks of aligned type I collagen fibers using 3D microextrusion printing of a collagen-Matrigel ink. We demonstrate hierarchical control of 3D-printed collagen with the ability to spatially pattern collagen fiber alignment and geometry. Our data suggest that collagen alignment results from a combination of molecular crowding in the ink and shear and extensional flows present during 3D printing. We demonstrate that human breast cancer cells cultured on 3D-printed collagen constructs orient along the direction of collagen fiber alignment. We also demonstrate the ability to simultaneously bioprint epithelial cell clusters and control the alignment and geometry of collagen fibers surrounding cells in the bioink. The resulting cell-laden constructs consist of epithelial cell clusters fully embedded in aligned networks of collagen fibers. Such 3D-printed constructs can be used for studies of developmental biology, tissue engineering, and regenerative medicine.

12.
Phys Rev Lett ; 120(20): 201101, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864326

RESUMO

Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy γ rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximity to Earth. We report on a search for a monoenergetic spectral line from self-annihilations of DM particles in the energy range from 300 GeV to 70 TeV using a two-dimensional maximum likelihood method taking advantage of both the spectral and spatial features of the signal versus background. The analysis makes use of Galactic center observations accumulated over ten years (2004-2014) with the H.E.S.S. array of ground-based Cherenkov telescopes. No significant γ-ray excess above the background is found. We derive upper limits on the annihilation cross section ⟨σv⟩ for monoenergetic DM lines at the level of 4×10^{-28} cm^{3} s^{-1} at 1 TeV, assuming an Einasto DM profile for the Milky Way halo. For a DM mass of 1 TeV, they improve over the previous ones by a factor of 6. The present constraints are the strongest obtained so far for DM particles in the mass range 300 GeV-70 TeV. Ground-based γ-ray observations have reached sufficient sensitivity to explore relevant velocity-averaged cross sections for DM annihilation into two γ-ray photons at the level expected from the thermal relic density for TeV DM particles.

13.
J Appl Microbiol ; 125(2): 398-408, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29655267

RESUMO

AIM: The objective of this study was to determine the efficacy and mechanisms of inactivation of two clinically relevant ESKAPE bacteria namely Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus by atmospheric pressure cold plasma. METHODS AND RESULTS: Plasma was generated between two brass grids by applying a radiofrequency electric field to a flow of helium. Intracellular generation of reactive species, alterations in cell membrane, and inactivation of bacteria in planktonic or biofilm growth were studied. Results were compared with commonly used antimicrobial drugs. Plasma exposure generated reactive oxygen and nitrogen species in bacteria, disrupted membrane integrity and reduced bacterial load. The efficacy in bacterial inactivation was comparable to antibiotics but exhibited a quicker killing rate. The antibacterial effect of plasma synergistically increased in association with antibiotics and did not diminish over repeated exposures, suggesting no development in bacterial resistance. CONCLUSIONS: Through generation of reactive species, cold plasma altered cell membrane and effectively inactivated clinically important bacteria, both in suspension and in biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY: As cold plasma damages different targets in bacterial cells, it emerges as an effective strategy used alone or in combination with antimicrobial drugs to control microbial infections and prevent the selection of resistant bacterial strains.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Gases em Plasma/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pressão Atmosférica , Sinergismo Farmacológico
14.
BMC Vet Res ; 14(1): 202, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29940954

RESUMO

BACKGROUND: Skin wound healing includes a system of biological processes, collectively restoring the integrity of the skin after injury. Healing by second intention refers to repair of large and deep wounds where the tissue edges cannot be approximated and substantial scarring is often observed. The objective of this study was to evaluate the effects of mesenchymal stem cells (MSCs) in second intention healing using a surgical wound model in sheep. MSCs are known to contribute to the inflammatory, proliferative, and remodeling phases of the skin regeneration process in rodent models, but data are lacking for large animal models. This study used three different approaches (clinical, histopathological, and molecular analysis) to assess the putative action of allogeneic MSCs at 15 and 42 days after lesion creation. RESULTS: At 15 days post-lesion, the wounds treated with MSCs showed a higher degree of wound closure, a higher percentage of re-epithelialization, proliferation, neovascularization and increased contraction in comparison to a control group. At 42 days, the wounds treated with MSCs had more mature and denser cutaneous adnexa compared to the control group. The MSCs-treated group showed an absence of inflammation and expression of CD3+ and CD20+. Moreover, the mRNA expression of hair-keratine (hKER) was observed in the MSCs-treated group 15 days after wound creation and had increased significantly by 42 days post-wound creation. Collagen1 gene (Col1α1) expression was also greater in the MSCs-treated group compared to the control group at both days 15 and 42. CONCLUSION: Peripheral blood-derived MSCs may improve the quality of wound healing both for superficial injuries and deep lesions. MSCs did not induce an inflammatory response and accelerated the appearance of granulation tissue, neovascularization, structural proteins, and skin adnexa.


Assuntos
Transplante de Células-Tronco Mesenquimais/veterinária , Pele/lesões , Cicatrização , Animais , Feminino , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Ovinos , Pele/patologia
15.
Chaos ; 28(9): 096105, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278626

RESUMO

Millimetric droplets may walk across the surface of a vibrating fluid bath, propelled forward by their own guiding or "pilot" wave field. We here consider the interaction of such walking droplets with a submerged circular pillar. While simple scattering events are the norm, as the waves become more pronounced, the drop departs the pillar along a path corresponding to a logarithmic spiral. The system behavior is explored both experimentally and theoretically, using a reduced numerical model in which the pillar is simply treated as a region of decreased wave speed. A trajectory equation valid in the limit of weak droplet acceleration is used to infer an effective force due to the presence of the pillar, which is found to be a lift force proportional to the product of the drop's walking speed and its instantaneous angular speed around the post. This system presents a macroscopic example of pilot-wave-mediated forces giving rise to apparent action at a distance.

16.
Enferm Intensiva ; 28(2): 64-79, 2017.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-28131790

RESUMO

OBJECTIVE: Weaning from invasive mechanical ventilation (IMV) is influenced by physiological and psychological factors, the latter being the least studied. The aim was to identify, through the literature, patients' experiences during weaning from IMV and report its influencing factors. METHOD: The literature search was conducted using the Pubmed, CINAHL and PsycINFO databases. The search terms were: "patient", "experience" and "ventilator weaning". The research limits were: age (>19years) and language (English, Spanish and Finnish). RESULTS: Fifteen publications were analysed. The main results were grouped into three main categories according to patient's perceptions, feelings and experiences, influence of professionals' attention and determinants for successful weaning. Patients remember IMV weaning as a stressful process where they experience anxiety, frustration, despair or uncertainty. Nurses have a key role in improving communication with patients and foreseeing their needs. Family support and the care provided by the caregivers were shown as essential during the process. The patient's self-determination, self-motivation and confidence are identified as important factors to achieve successful IMV weaning. CONCLUSIONS: Psychological care, in addition to physical and technical care, is important at providing holistic care. Interventional studies are needed to improve the care during the weaning experience.


Assuntos
Desmame do Respirador/psicologia , Humanos , Autorrelato
17.
Phys Rev Lett ; 117(15): 151302, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27768338

RESUMO

A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis iss developed to improve the sensitivity to linelike signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95% C.L. the presence of a 130 GeV line (at l=-1.5°, b=0° and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. RESULTS: No significant excess associated with dark matter annihilations was found in the energy range of 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.

18.
Phys Rev Lett ; 117(11): 111301, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27661677

RESUMO

The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using γ-ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant γ-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section ⟨σv⟩. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach ⟨σv⟩ values of 6×10^{-26} cm^{3} s^{-1} in the W^{+}W^{-} channel for a DM particle mass of 1.5 TeV, and 2×10^{-26} cm^{3} s^{-1} in the τ^{+}τ^{-} channel for a 1 TeV mass. For the first time, ground-based γ-ray observations have reached sufficient sensitivity to probe ⟨σv⟩ values expected from the thermal relic density for TeV DM particles.

19.
Allergy ; 71(3): 403-11, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26613380

RESUMO

BACKGROUND: Vernal keratoconjunctivitis (VKC) is a severe ocular allergy with pathogenic mechanism poorly understood and no efficacious treatment. The aims of the study were to determine quantities and distribution of Hsp chaperones in the conjunctiva of VKC patients and assess their levels in conjunctival epithelial and fibroblast cultures exposed to inflammatory stimuli. METHODS: Hsp10, Hsp27, Hsp40, Hsp60, Hsp70, Hsp90, Hsp105, and Hsp110 were determined in conjunctiva biopsies from nine patients and nine healthy age-matched normal subjects, using immunomorphology and qPCR. Conjunctival epithelial cells and fibroblasts were cultured and stimulated with IL-1ß, histamine, IL-4, TNF-α, or UV-B irradiation, and changes in Hsp levels were determined by Western blotting. RESULTS: Hsp27, Hsp40, Hsp70, and Hsp90 levels increased in the patients' conjunctiva, whereas Hsp10, Hsp60, Hsp100, and Hsp105 did not. Double immunofluorescence demonstrated colocalization of Hsp27, Hsp40, Hsp70, and Hsp90 with CD68 and tryptase. Testing of cultured conjunctival cells revealed an increase in the levels of Hsp27 in fibroblasts stimulated with IL-4; Hsp40 in epithelial cells stimulated with IL-4 and TNF-α and in fibroblasts stimulated with IL-4, TNF-α, and IL-1ß; Hsp70 in epithelial cells stimulated with histamine and IL-4; and Hsp90 in fibroblasts stimulated with IL-1ß, TNF-α, and IL-4. UV-B did not induce changes. CONCLUSIONS: VKC conjunctiva displays distinctive quantitative patterns of Hsps as compared with healthy controls. Cultured conjunctival cells respond to cytokines and inflammatory stimuli with changes in the Hsps quantitative patterns. The data suggest that interaction between the chaperoning and the immune systems drives disease progression.


Assuntos
Conjuntivite Alérgica/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Adolescente , Células Cultivadas , Criança , Conjuntivite Alérgica/diagnóstico , Conjuntivite Alérgica/genética , Conjuntivite Alérgica/imunologia , Células Epiteliais/metabolismo , Feminino , Fibroblastos/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Imuno-Histoquímica , Masculino , Chaperonas Moleculares/genética
20.
Soft Matter ; 12(22): 4886-90, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27076278

RESUMO

We consider the elastocapillary rise between swellable structures using a favorable solvent. We characterize the dynamic deformations and resulting equilibrium configurations for various beams. Our analysis reveals the importance of the spacing between the two beams, and the elastocapillary length lec, which prescribes the relative magnitude of surface tension and bending stiffness in the system. In particular, we rationalize the transition between coalescence-dominated, bending-dominated, and swelling-dominated regimes, and enumerate the subtle interfacial mechanisms at play in the ratcheting of a fluid droplet trapped between the curling beams.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa