Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Insect Mol Biol ; 31(5): 620-633, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35587772

RESUMO

Heterologous expression systems (e.g., Xenopus laevis oocytes) are useful to study the biophysical properties and pharmacology of ionotropic receptors such as ionotropic glutamate (iGLuRs) and nicotinic acetylcholine (nAChRs) receptors. However, insect receptors often require the co-expression of chaperone proteins to be functional. Only few iGluRs and nAChRs have been successfully expressed in such systems. Here, we compared the efficiency of chaperone proteins to promote the functional expression of one Apis mellifera iGluR and several nAChR subunit combinations (α1α8ß1, α7, α2α8ß1 and α2α7α8ß1) in Xenopus oocytes. To this end, we cloned a new iGluR (GluR-1) and potential chaperone proteins (e.g., SOL-1, Neto, NACHO) and tested more than 40 combinations of human, nematode and honeybee proteins. We obtained robust expression of GluR-1 and α1α8ß1 when co-expressed with honeybee chaperone proteins and found that nAChR expression critically depended on the α1 subunit N-terminal sequence. We recorded small ACh-gated currents in few oocytes when the α7 subunit was co-expressed with Caenorhabditis elegans RIC-3, but none of the chaperone proteins allowed efficient expression of α2α8ß1 or α2α7α8ß1. Our results show that only some protein combinations can reconstitute functional receptors in Xenopus oocytes and that protein combination efficient in one species is not always efficient in another species.


Assuntos
Receptores Nicotínicos , Animais , Abelhas , Ácido Glutâmico/metabolismo , Humanos , Oócitos/metabolismo , Receptores Nicotínicos/metabolismo , Xenopus laevis/metabolismo
2.
J Biol Chem ; 293(49): 19012-19024, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30333227

RESUMO

In insects, γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter, and GABA-gated ion channels are the target of different classes of insecticides, including fipronil. We report here the cloning of six subunits (four RDL, one LCCH3, and one GRD) that constitute the repertoire of the GABA-gated ion channel family of the Varroa mite (Varroa destructor), a honey bee ectoparasite. We also isolated a truncated GRD subunit with a premature stop codon. We found that when expressed in Xenopus laevis oocytes, three of the four RDL subunits (VdesRDL1, VdesRDL2, and VdesRDL3) formed functional, homomultimeric anionic receptors, whereas GRD and LCCH3 produced heteromultimeric cationic receptors. These receptors displayed specific sensitivities toward GABA and fipronil, and VdesRDL1 was the most resistant to the insecticide. We identified specific residues in the VdesRDL1 pore-lining region that explain its high resistance to fipronil. VdesRDL4 did not form a functional receptor when expressed alone, but it assembled with VdesRDL1 to form a heteromultimeric receptor with properties distinct from those of the VdesRDL1 homomultimeric receptor. Moreover, VdesRDL1 physically interacted with VdesRDL3, generating a heteromultimeric receptor combining properties of both subunits. On the other hand, we did not detect any functional interaction between VdesLCCH3 and the VdesRDL subunits, an observation that differed from what was previously reported for Drosophila melanogaster In conclusion, this study provides insights relevant to improve our understanding of the precise role of GABAergic signaling in insects and new tools for the development of Varroa mite-specific insecticidal agents that do not harm honey bees.


Assuntos
Proteínas de Artrópodes/metabolismo , Receptores de GABA/metabolismo , Varroidae/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/antagonistas & inibidores , Proteínas de Artrópodes/genética , Antagonistas GABAérgicos/farmacologia , Oócitos/metabolismo , Multimerização Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pirazóis/farmacologia , Receptores de GABA/genética , Varroidae/genética , Xenopus laevis
3.
Nat Commun ; 15(1): 5201, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890295

RESUMO

Nuclear receptors (NRs) regulate transcription in response to ligand binding and NR modulation allows pharmacological control of gene expression. Although some NRs are relevant as drug targets, the NR1 family, which comprises 19 NRs binding to hormones, vitamins, and lipid metabolites, has only been partially explored from a translational perspective. To enable systematic target identification and validation for this protein family in phenotypic settings, we present an NR1 chemogenomic (CG) compound set optimized for complementary activity/selectivity profiles and chemical diversity. Based on broad profiling of candidates for specificity, toxicity, and off-target liabilities, sixty-nine comprehensively annotated NR1 agonists, antagonists and inverse agonists covering all members of the NR1 family and meeting potency and selectivity standards are included in the final NR1 CG set. Proof-of-concept application of this set reveals effects of NR1 members in autophagy, neuroinflammation and cancer cell death, and confirms the suitability of the set for target identification and validation.


Assuntos
Autofagia , Humanos , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Ligantes , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/agonistas , Camundongos , Células HEK293 , Genômica/métodos , Linhagem Celular Tumoral
4.
Methods Mol Biol ; 2706: 215-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37558952

RESUMO

Autophagy is a cellular process implicated in the renewal of cellular components and the maintenance of cellular hemostasis and therefore associated with various types of diseases. In addition, autophagy belongs to the stress response pathways and is frequently activated by chemical compounds harboring characteristics of cell toxicity. High-throughput screens analyzing autophagy flux are therefore applied in both, the field of compound identification for targeting autophagy and compound characterization for analyzing compound toxicity. In this chapter, we describe a live-cell, fluorescent-based, high-throughput screening method in 384-well format for the fast and accurate measurement of autophagy flux over time suitable for academic research, pharmacological applications, and drug discovery.


Assuntos
Autofagia , Ensaios de Triagem em Larga Escala , Proteínas de Fluorescência Verde/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Descoberta de Drogas , Proteínas Associadas aos Microtúbulos/metabolismo
5.
Nat Commun ; 14(1): 8364, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102139

RESUMO

Selective autophagy of the endoplasmic reticulum (ER), known as ER-phagy, is an important regulator of ER remodeling and essential to maintain cellular homeostasis during environmental changes. We recently showed that members of the FAM134 family play a critical role during stress-induced ER-phagy. However, the mechanisms on how they are activated remain largely unknown. In this study, we analyze phosphorylation of FAM134 as a trigger of FAM134-driven ER-phagy upon mTOR (mechanistic target of rapamycin) inhibition. An unbiased screen of kinase inhibitors reveals CK2 to be essential for FAM134B- and FAM134C-driven ER-phagy after mTOR inhibition. Furthermore, we provide evidence that ER-phagy receptors are regulated by ubiquitination events and that treatment with E1 inhibitor suppresses Torin1-induced ER-phagy flux. Using super-resolution microscopy, we show that CK2 activity is essential for the formation of high-density FAM134B and FAM134C clusters. In addition, dense clustering of FAM134B and FAM134C requires phosphorylation-dependent ubiquitination of FAM134B and FAM134C. Treatment with the CK2 inhibitor SGC-CK2-1 or mutation of FAM134B and FAM134C phosphosites prevents ubiquitination of FAM134 proteins, formation of high-density clusters, as well as Torin1-induced ER-phagy flux. Therefore, we propose that CK2-dependent phosphorylation of ER-phagy receptors precedes ubiquitin-dependent activation of ER-phagy flux.


Assuntos
Autofagia , Proteínas de Membrana , Fosforilação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Transporte/metabolismo , Estresse do Retículo Endoplasmático , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinação
6.
Cell Rep ; 34(3): 108635, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472076

RESUMO

The ubiquitin-like molecule NEDD8 controls several biological processes and is a promising target for therapeutic intervention. NEDDylation occurs through specific NEDD8 enzymes (canonical) or enzymes of the ubiquitin system (atypical). Identification of NEDD8 sites on substrates is critical for delineating the processes controlled by NEDDylation. By combining the use of the NEDD8 R74K mutant with anti-di-glycine (anti-diGly) antibodies, we identified 1,101 unique NEDDylation sites in 620 proteins. Bioinformatics analysis reveals that canonical and atypical NEDDylation have distinct proteomes; the spliceosome/mRNA surveillance/DNA replication and ribosome/proteasome, respectively. The data also reveal the formation of poly-NEDD8, hybrid NEDD8-ubiquitin, and NEDD8-SUMO-2 chains as potential molecular signals. In particular, NEDD8-SUMO-2 chains are induced upon proteotoxic stress (atypical) through NEDDylation of K11 in SUMO-2, and conjugates accumulate in previously described nucleolus-related inclusions. The study uncovers a diverse proteome for NEDDylation and is consistent with the concept of extensive cross-talk between ubiquitin and Ubls under proteotoxic stress conditions.


Assuntos
Proteína NEDD8/metabolismo , Proteoma/metabolismo , Domínio Catalítico , Nucléolo Celular/metabolismo , Endopeptidases/metabolismo , Células HCT116 , Humanos , Proteína NEDD8/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa