Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Blood ; 144(12): 1257-1270, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-38805638

RESUMO

ABSTRACT: The introduction of all-trans retinoic acid combined with anthracyclines has significantly improved the outcomes for patients diagnosed with acute promyelocytic leukemia (APL), and this strategy remains the standard of care in countries in which arsenic trioxide is not affordable. However, data from national registries and real-world databases indicate that low- and middle-income countries (LMIC) still face disappointing results, mainly because of high induction mortality and suboptimal management of complications. The American Society of Hematology established the International Consortium on Acute Leukemias (ICAL) to address this challenge through international clinical networking. Here, we present the findings from the International Consortium on Acute Promyelocytic Leukemia study involving 806 patients with APL recruited from 2005 to 2020 in Brazil, Chile, Paraguay, Peru, and Uruguay. The induction mortality rate has notably decreased to 14.6% compared with the pre-ICAL rate of 32%. Multivariable logistic regression analysis revealed as factors associated with induction death: age of ≥40 years, Eastern Cooperative Oncology Group performance status score of 3, high-risk status based on the Programa Español de Tratamiento en Hematologia/Gruppo Italiano Malattie EMatologiche dell'Adulto classification, albumin level of ≤3.5 g/dL, bcr3 PML/RARA isoform, the interval between presenting symptoms to diagnosis exceeding 48 hours, and the occurrence of central nervous system and pulmonary bleeding. With a median follow-up of 53 months, the estimated 4-year overall survival rate is 81%, the 4-year disease-free survival rate is 80%, and the 4-year cumulative incidence of relapse rate is 15%. These results parallel those observed in studies conducted in high-income countries, highlighting the long-term effectiveness of developing clinical networks to improve clinical care and infrastructure in LMIC.


Assuntos
Leucemia Promielocítica Aguda , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/mortalidade , Leucemia Promielocítica Aguda/epidemiologia , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Adolescente , Adulto Jovem , Resultado do Tratamento , Taxa de Sobrevida , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
2.
Arterioscler Thromb Vasc Biol ; 44(4): 954-968, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38385292

RESUMO

BACKGROUND: Venous thromboembolism is a major health problem. After thrombus formation, its resolution is essential to re-establish blood flow, which is crucially mediated by infiltrating neutrophils and monocytes in concert with activated platelets and endothelial cells. Thus, we aimed to modulate leukocyte function during thrombus resolution post-thrombus formation by blocking P-selectin/CD62P-mediated cell interactions. METHODS: Thrombosis was induced by inferior vena cava stenosis through ligation in mice. After 1 day, a P-selectin-blocking antibody or isotype control was administered and thrombus composition and resolution were analyzed. RESULTS: Localizing neutrophils and macrophages in thrombotic lesions of wild-type mice revealed that these cells enter the thrombus and vessel wall from the caudal end. Neutrophils were predominantly present 1 day and monocytes/macrophages 3 days after vessel ligation. Blocking P-selectin reduced circulating platelet-neutrophil and platelet-Ly6Chigh monocyte aggregates near the thrombus, and diminished neutrophils and Ly6Chigh macrophages in the cranial thrombus part compared with isotype-treated controls. Depletion of neutrophils 1 day after thrombus initiation did not phenocopy P-selectin inhibition but led to larger thrombi compared with untreated controls. In vitro, P-selectin enhanced human leukocyte function as P-selectin-coated beads increased reactive oxygen species production by neutrophils and tissue factor expression of classical monocytes. Accordingly, P-selectin inhibition reduced oxidative burst in the thrombus and tissue factor expression in the adjacent vessel wall. Moreover, blocking P-selectin reduced thrombus density determined by scanning electron microscopy and increased urokinase-type plasminogen activator levels in the thrombus, which accelerated caudal fibrin degradation from day 3 to day 14. This accelerated thrombus resolution as thrombus volume declined more rapidly after blocking P-selectin. CONCLUSIONS: Inhibition of P-selectin-dependent activation of monocytes and neutrophils accelerates venous thrombosis resolution due to reduced infiltration and activation of innate immune cells at the site of thrombus formation, which prevents early thrombus stabilization and facilitates fibrinolysis.


Assuntos
Monócitos , Trombose , Camundongos , Humanos , Animais , Monócitos/patologia , Selectina-P , Células Endoteliais , Tromboplastina , Infiltração de Neutrófilos , Neutrófilos
3.
Proc Natl Acad Sci U S A ; 119(29): e2207020119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858345

RESUMO

Changes in Ca2+ influx during proinflammatory stimulation modulates cellular responses, including the subsequent activation of inflammation. Whereas the involvement of Ca2+ has been widely acknowledged, little is known about the role of Na+. Ranolazine, a piperazine derivative and established antianginal drug, is known to reduce intracellular Na+ as well as Ca2+ levels. In stable coronary artery disease patients (n = 51) we observed reduced levels of high-sensitive C-reactive protein (CRP) 3 mo after the start of ranolazine treatment (n = 25) as compared to the control group. Furthermore, we found that in 3,808 acute coronary syndrome patients of the MERLIN-TIMI 36 trial, individuals treated with ranolazine (1,934 patients) showed reduced CRP values compared to placebo-treated patients. The antiinflammatory effects of sodium modulation were further confirmed in an atherosclerotic mouse model. LDL-/- mice on a high-fat diet were treated with ranolazine, resulting in a reduced atherosclerotic plaque burden, increased plaque stability, and reduced activation of the immune system. Pharmacological Na+ inhibition by ranolazine led to reduced express of adhesion molecules and proinflammatory cytokines and reduced adhesion of leukocytes to activated endothelium both in vitro and in vivo. We demonstrate that functional Na+ shuttling is required for a full cellular response to inflammation and that inhibition of Na+ influx results in an attenuated inflammatory reaction. In conclusion, we demonstrate that inhibition of Na+-Ca2+ exchange during inflammation reduces the inflammatory response in human endothelial cells in vitro, in a mouse atherosclerotic disease model, and in human patients.


Assuntos
Síndrome Coronariana Aguda , Proteína C-Reativa , Fármacos Cardiovasculares , Doença da Artéria Coronariana , Ranolazina , Bloqueadores dos Canais de Sódio , Sódio , Síndrome Coronariana Aguda/tratamento farmacológico , Animais , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Doença da Artéria Coronariana/tratamento farmacológico , Células Endoteliais/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Camundongos , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico
4.
Am J Physiol Heart Circ Physiol ; 326(2): H418-H425, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099845

RESUMO

Cardiac arrhythmias significantly contribute to mortality in Duchenne muscular dystrophy (DMD), a severe muscle illness caused by mutations in the gene encoding for the intracellular protein dystrophin. A major source for arrhythmia vulnerability in patients with DMD is impaired ventricular impulse conduction, which predisposes for ventricular asynchrony, decreased cardiac output, and the development of reentrant circuits. Using the dystrophin-deficient mdx mouse model for human DMD, we previously reported that the lack of dystrophin causes a significant loss of peak Na+ current (INa) in ventricular cardiomyocytes. This finding provided a mechanistic explanation for ventricular conduction defects and concomitant arrhythmias in the dystrophic heart. In the present study, we explored the hypothesis that empagliflozin (EMPA), an inhibitor of sodium/glucose cotransporter 2 in clinical use to treat type II diabetes and nondiabetic heart failure, rescues peak INa loss in dystrophin-deficient ventricular cardiomyocytes. We found that INa of cardiomyocytes derived from mdx mice, which had received clinically relevant doses of EMPA for 4 wk, was restored to wild-type level. Moreover, incubation of isolated mdx ventricular cardiomyocytes with 1 µM EMPA for 24 h significantly increased their peak INa. This effect was independent of Na+-H+ exchanger 1 inhibition by the drug. Our findings imply that EMPA treatment can rescue abnormally reduced peak INa of dystrophin-deficient ventricular cardiomyocytes. Long-term EMPA administration may diminish arrhythmia vulnerability in patients with DMD.NEW & NOTEWORTHY Dystrophin deficiency in cardiomyocytes leads to abnormally reduced Na+ currents. These can be rescued by long-term empagliflozin treatment.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Tipo 2 , Glucosídeos , Distrofia Muscular de Duchenne , Animais , Camundongos , Humanos , Distrofina/genética , Camundongos Endogâmicos mdx , Miócitos Cardíacos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Distrofia Muscular de Duchenne/genética , Arritmias Cardíacas/metabolismo , Sódio/metabolismo , Modelos Animais de Doenças
5.
Basic Res Cardiol ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39422732

RESUMO

Numerous cardioprotective interventions have been reported to reduce myocardial infarct size (IS) in pre-clinical studies. However, their translation for the benefit of patients with acute myocardial infarction (AMI) has been largely disappointing. One reason for the lack of translation is the lack of rigor and reproducibility in pre-clinical studies. To address this, we have established the European IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) pig AMI network with centralized randomization and blinded core laboratory IS analysis and validated the network with ischemic preconditioning (IPC) as a positive control. Ten sites in the COST Innovators Grant (IG16225) network participated in the IMPACT network. Three sites were excluded from the final analysis through quality control of infarct images and use of pre-defined exclusion criteria. Using a centrally generated randomization list, pigs were allocated to myocardial ischemia/reperfusion (I/R, N = 5/site) or IPC + I/R (N = 5/site). The primary endpoint was IS [% area-at-risk (AAR)], as quantified by triphenyl-tetrazolium-chloride (TTC) staining in a centralized, blinded core laboratory (5 sites), or IS [% left-ventricular mass (LV)], as quantified by a centralized, blinded cardiac magnetic resonance (CMR) core laboratory (2 sites). In pooled analyses, IPC significantly reduced IS when compared to I/R (57 ± 14 versus 32 ± 19 [%AAR] N = 25 pigs/group; p < 0.001; 25 ± 13 versus 14 ± 8 [%LV]; N = 10 pigs/group; p = 0.021). In site-specific analyses, in 4 of the 5 sites, IS was significantly reduced by IPC when compared to I/R when quantified by TTC and in 1 of 2 sites when quantified by CMR. A pig AMI multicenter European network with centralized randomization and core blinded IS analysis was established and validated with the aim to improve the reproducibility of cardioprotective interventions in pre-clinical studies and the translation of cardioprotection for patient benefit.

7.
Circ Res ; 130(12): 1888-1905, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679365

RESUMO

Heart failure (HF) describes a heterogenous complex spectrum of pathological conditions that results in structural and functional remodeling leading to subsequent impairment of cardiac function, including either systolic dysfunction, diastolic dysfunction, or both. Several factors chronically lead to HF, including cardiac volume and pressure overload that may result from hypertension, valvular lesions, acute, or chronic ischemic injuries. Major forms of HF include hypertrophic, dilated, and restrictive cardiomyopathy. The severity of cardiomyopathy can be impacted by other comorbidities such as diabetes or obesity and external stress factors. Age is another major contributor, and the number of patients with HF is rising worldwide in part due to an increase in the aged population. HF can occur with reduced ejection fraction (HF with reduced ejection fraction), that is, the overall cardiac function is compromised, and typically the left ventricular ejection fraction is lower than 40%. In some cases of HF, the ejection fraction is preserved (HF with preserved ejection fraction). Animal models play a critical role in facilitating the understanding of molecular mechanisms of how hearts fail. This review aims to summarize and describe the strengths, limitations, and outcomes of both small and large animal models of HF with reduced ejection fraction that are currently used in basic and translational research. The driving defect is a failure of the heart to adequately supply the tissues with blood due to impaired filling or pumping. An accurate model of HF with reduced ejection fraction would encompass the symptoms (fatigue, dyspnea, exercise intolerance, and edema) along with the pathology (collagen fibrosis, ventricular hypertrophy) and ultimately exhibit a decrease in cardiac output. Although countless experimental studies have been published, no model completely recapitulates the full human disease. Therefore, it is critical to evaluate the strength and weakness of each animal model to allow better selection of what animal models to use to address the scientific question proposed.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Idoso , Animais , Humanos , Modelos Animais , Volume Sistólico , Função Ventricular Esquerda
8.
Mol Med ; 29(1): 111, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596531

RESUMO

BACKGROUND: Soluble oligomeric forms of alpha-synuclein (aSyn-O) are believed to be one of the main toxic species in Parkinson's disease (PD) leading to degeneration. aSyn-O can induce Ca2+ influx, over activating downstream pathways leading to PD phenotype. Calcineurin (CN), a phosphatase regulated by Ca2+ levels, activates NFAT transcription factors that are involved in the regulation of neuronal plasticity, growth, and survival. METHODS: Here, using a combination of cell toxicity and gene regulation assays performed in the presence of classical inhibitors of the NFAT/CN pathway, we investigate NFAT's role in neuronal degeneration induced by aSyn-O. RESULTS: aSyn-O are toxic to neurons leading to cell death, loss of neuron ramification and reduction of synaptic proteins which are reversed by CN inhibition with ciclosporin-A or VIVIT, a NFAT specific inhibitor. aSyn-O induce NFAT nuclear translocation and transactivation. We found that aSyn-O modulates the gene involved in the maintenance of synapses, synapsin 1 (Syn 1). Syn1 mRNA and protein and synaptic puncta are drastically reduced in cells treated with aSyn-O which are reversed by NFAT inhibition. CONCLUSIONS: For the first time a direct role of NFAT in aSyn-O-induced toxicity and Syn1 gene regulation was demonstrated, enlarging our understanding of the pathways underpinnings synucleinopathies.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , Linfócitos T , Homeostase , Apoptose , Calcineurina
9.
Br J Haematol ; 200(2): 170-174, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36263593

RESUMO

Although a growing body of evidence demonstrates that altered mtDNA content (mtDNAc) has clinical implications in several types of solid tumours, its prognostic relevance in acute promyelocytic leukaemia (APL) patients remains largely unknown. Here, we show that patients with higher-than-normal mtDNAc had better outcomes regardless of tumour burden. These results were more evident in patients with low-risk of relapse. The multivariate Cox proportional hazard model demonstrated that high mtDNAc was independently associated with a decreased cumulative incidence of relapse. Altogether, our data highlights the possible role of mitochondrial metabolism in APL patients treated with ATRA.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Tretinoína/uso terapêutico , DNA Mitocondrial/genética , Relevância Clínica , Recidiva Local de Neoplasia/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resultado do Tratamento
10.
Hepatology ; 75(3): 610-622, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34716927

RESUMO

BACKGROUND AND AIMS: Liver fibrosis is the static and main (70%-80%) component of portal hypertension (PH). We investigated dynamic components of PH by a three-dimensional analysis based on correlation of hepatic collagen proportionate area (CPA) with portal pressure (PP) in animals or HVPG in patients. APPROACH AND RESULTS: Different animal models (bile duct ligation: n = 31, carbon tetrachloride: n = 12, thioacetamide: n = 12, choline-deficient high-fat diet: n = 12) and patients with a confirmed single etiology of cholestatic (primary biliary cholangitis/primary sclerosing cholangitis: n = 16), alcohol-associated (n = 22), and metabolic (NASH: n = 19) liver disease underwent CPA quantification on liver specimens/biopsies. Based on CPA-to-PP/HVPG correlation, potential dynamic components were identified in subgroups of animals/patients with lower-than-expected and higher-than-expected PP/HVPG. Dynamic PH components were validated in a patient cohort (n = 245) using liver stiffness measurement (LSM) instead of CPA. CPA significantly correlated with PP in animal models (Rho = 0.531; p < 0.001) and HVPG in patients (Rho = 0.439; p < 0.001). Correlation of CPA with PP/HVPG varied across different animal models and etiologies in patients. In models, severity of hyperdynamic circulation and specific fibrosis pattern (portal fibrosis: p = 0.02; septa width: p = 0.03) were associated with PH severity. In patients, hyperdynamic circulation (p = 0.04), vascular dysfunction/angiogenesis (VWF-Ag: p = 0.03; soluble vascular endothelial growth factor receptor 1: p = 0.03), and bile acids (p = 0.04) were dynamic modulators of PH. The LSM-HVPG validation cohort confirmed these and also indicated IL-6 (p = 0.008) and hyaluronic acid (HA: p < 0.001) as dynamic PH components. CONCLUSIONS: The relative contribution of "static" fibrosis on PH severity varies by type of liver injury. Next to hyperdynamic circulation, increased bile acids, VWF-Ag, IL-6, and HA seem to indicate a pronounced dynamic component of PH in patients.


Assuntos
Colágeno , Hipertensão Portal , Cirrose Hepática , Fígado , Pressão na Veia Porta/fisiologia , Animais , Biópsia/métodos , Depressores do Sistema Nervoso Central/farmacologia , Colestase/fisiopatologia , Colágeno/análise , Colágeno/metabolismo , Técnicas de Imagem por Elasticidade/métodos , Etanol/farmacologia , Hemodinâmica , Humanos , Hipertensão Portal/diagnóstico , Hipertensão Portal/etiologia , Hipertensão Portal/fisiopatologia , Fígado/diagnóstico por imagem , Fígado/metabolismo , Fígado/patologia , Fígado/fisiopatologia , Circulação Hepática , Cirrose Hepática/complicações , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Modelos Animais , Ratos
11.
Rev Cardiovasc Med ; 24(1): 6, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39076867

RESUMO

Background: Geometrical alterations in the coronary resistance artery network and the potential involvement of Tenascin C (TNC) extracellular matrix protein were investigated in diabetic and control mice. Methods: Diabetes was induced by streptozotocin (STZ) injections (n = 7-11 animals in each group) in Tenascin C KO (TNC KO) mice and their Wild type (A/J) littermates. After 16-18 weeks the heart was removed and the whole subsurface network of the left coronary artery was prepared (down to branches of 40 µ m outer diameter), in situ pressure-perfused and studied using video-microscopy. Outer and inner diameters, wall thicknesses and bifurcation angles were measured on whole network pictures reconstructed into collages at 1.7 µ m pixel resolutions. Results: Diabetes induced abnormal morphological alterations including trifurcations, sharp bends of larger branches, and branches directed retrogradely (p < 0.001 by the χ 2 test). Networks of TNC KO mice tended to form early divisions producing parallelly running larger branches (p < 0.001 by the χ 2 probe). Networks of coronary resistance arteries were substantially more abundant in 100-180 µ m components, appearing in 2-5 mm flow distance from orifice in diabetes. This was accompanied by thickening of the wall of larger arterioles ( > 220 µ m) and thinning of the wall of smaller (100-140 µ m) arterioles (p < 0.001). Blood flow should cover larger distances in diabetic networks, but interestingly STZ-induced diabetes did not generate further geometrical changes in TNC KO mice. Conclusions: Diabetes promotes hypertrophic and hypotrophic vascular remodeling and induces vasculogenesis at well defined, specific positions of the coronary vasculature. TNC plays a pivotal role in the formation of coronary network geometry, and TNC deletion causes parallel fragmentation preventing diabetes-induced abnormal vascular morphologies.

12.
FASEB J ; 36(10): e22532, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063138

RESUMO

Interleukin-4 (IL-4) and its receptors (IL-4R) promote the proliferation and polarization of macrophages. However, it is unknown if IL-4R also influences monocyte homeostasis and if steady state IL-4 levels are sufficient to affect monocytes. Employing full IL-4 receptor alpha knockout mice (IL-4Rα-/- ) and mice with a myeloid-specific deletion of IL-4Rα (IL-4Rαf/f LysMcre ), we show that IL-4 acts as a homeostatic factor regulating circulating monocyte numbers. In the absence of IL-4Rα, murine monocytes in blood were reduced by 50% without altering monocytopoiesis in the bone marrow. This reduction was accompanied by a decrease in monocyte-derived inflammatory cytokines in the plasma. RNA sequencing analysis and immunohistochemical staining of splenic monocytes revealed changes in mRNA and protein levels of anti-apoptotic factors including BIRC6 in IL-4Rα-/- knockout animals. Furthermore, assessment of monocyte lifespan in vivo measuring BrdU+ cells revealed that the lifespan of circulating monocytes was reduced by 55% in IL-4Rα-/- mice, whereas subcutaneously applied IL-4 prolonged it by 75%. Treatment of human monocytes with IL-4 reduced the amount of dying monocytes in vitro. Furthermore, IL-4 stimulation reduced the phosphorylation of proteins involved in the apoptosis pathway, including the phosphorylation of the NFκBp65 protein. In a cohort of human patients, serum IL-4 levels were significantly associated with monocyte counts. In a sterile peritonitis model, reduced monocyte counts resulted in an attenuated recruitment of monocytes upon inflammatory stimulation in IL-4Rαf/f LysMcre mice without changes in overall migratory function. Thus, we identified a homeostatic role of IL-4Rα in regulating the lifespan of monocytes in vivo.


Assuntos
Interleucina-4/metabolismo , Monócitos , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Animais , Homeostase , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Monócitos/metabolismo
13.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768836

RESUMO

Transient receptor potential cation channel subfamily A member 1 (TRPA1), an ion channel primarily expressed on sensory neurons, can be activated by substances occurring during myocardial infarction. Aims were to investigate whether activation, inhibition, or absence of TRPA1 affects infarcts and to explore underlying mechanisms. In the context of myocardial infarction, rats received a TRPA1 agonist, an antagonist, or vehicle at different time points, and infarct size was assessed. Wild type and TRPA1 knockout mice were also compared in this regard. In vitro, sensory neurons were co-cultured with cardiomyocytes and subjected to a model of ischemia-reperfusion. Although there was a difference between TRPA1 activation or inhibition in vivo, no experimental group was different to control animals in infarct size, which also applies to animals lacking TRPA1. In vitro, survival probability of cardiomyocytes challenged by ischemia-reperfusion increased from 32.8% in absence to 45.1% in presence of sensory neurons, which depends, at least partly, on TRPA1. This study raises doubts about whether TRPA1 is a promising target to reduce myocardial damage within a 24 h period. The results are incompatible with relevant enlargements of infarcts by TRPA1 activation or inhibition, which argues against adverse effects when TRPA1 is targeted for other indications.


Assuntos
Infarto do Miocárdio , Canais de Potencial de Receptor Transitório , Camundongos , Ratos , Animais , Canal de Cátion TRPA1/genética , Canais de Potencial de Receptor Transitório/genética , Miocárdio , Células Receptoras Sensoriais , Camundongos Knockout , Infarto do Miocárdio/genética
14.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239853

RESUMO

Duchenne muscular dystrophy (DMD) is characterized by wasting of muscles that leads to difficulty moving and premature death, mainly from heart failure. Glucocorticoids are applied in the management of the disease, supporting the hypothesis that inflammation may be driver as well as target. However, the inflammatory mechanisms during progression of cardiac and skeletal muscle dysfunction are still not well characterized. Our objective was to characterize the inflammasomes in myocardial and skeletal muscle in rodent models of DMD. Gastrocnemius and heart samples were collected from mdx mice and DMDmdx rats (3 and 9-10 months). Inflammasome sensors and effectors were assessed by immunoblotting. Histology was used to assess leukocyte infiltration and fibrosis. In gastrocnemius, a tendency towards elevation of gasdermin D irrespective of the age of the animal was observed. The adaptor protein was elevated in the mdx mouse skeletal muscle and heart. Increased cleavage of the cytokines was observed in the skeletal muscle of the DMDmdx rats. Sensor or cytokine expression was not changed in the tissue samples of the mdx mice. In conclusion, inflammatory responses are distinct between the skeletal muscle and heart in relevant models of DMD. Inflammation tends to decrease over time, supporting the clinical observations that the efficacy of anti-inflammatory therapies might be more prominent in the early stage.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Ratos , Animais , Distrofia Muscular de Duchenne/metabolismo , Inflamassomos/metabolismo , Camundongos Endogâmicos mdx , Roedores/metabolismo , Músculo Esquelético/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças
15.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768204

RESUMO

Inherited deficiency in ether lipids, a subgroup of glycerophospholipids with unique biochemical and biophysical properties, evokes severe symptoms in humans resulting in a multi-organ syndrome. Mouse models with defects in ether lipid biosynthesis have widely been used to understand the pathophysiology of human disease and to study the roles of ether lipids in various cell types and tissues. However, little is known about the function of these lipids in cardiac tissue. Previous studies included case reports of cardiac defects in ether-lipid-deficient patients, but a systematic analysis of the impact of ether lipid deficiency on the mammalian heart is still missing. Here, we utilize a mouse model of complete ether lipid deficiency (Gnpat KO) to accomplish this task. Similar to a subgroup of human patients with rhizomelic chondrodysplasia punctata (RCDP), a fraction of Gnpat KO fetuses present with defects in ventricular septation, presumably evoked by a developmental delay. We did not detect any signs of cardiomyopathy but identified increased left ventricular end-systolic and end-diastolic pressure in middle-aged ether-lipid-deficient mice. By comprehensive electrocardiographic characterization, we consistently found reduced ventricular conduction velocity, as indicated by a prolonged QRS complex, as well as increased QRS and QT dispersion in the Gnpat KO group. Furthermore, a shift of the Wenckebach point to longer cycle lengths indicated depressed atrioventricular nodal function. To complement our findings in mice, we analyzed medical records and performed electrocardiography in ether-lipid-deficient human patients, which, in contrast to the murine phenotype, indicated a trend towards shortened QT intervals. Taken together, our findings demonstrate that the cardiac phenotype upon ether lipid deficiency is highly heterogeneous, and although the manifestations in the mouse model only partially match the abnormalities in human patients, the results add to our understanding of the physiological role of ether lipids and emphasize their importance for proper cardiac development and function.


Assuntos
Éter , Plasmalogênios , Animais , Humanos , Camundongos , Éteres , Etil-Éteres , Coração , Mamíferos/metabolismo
16.
Molecules ; 28(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838660

RESUMO

Cancer is a principal cause of death in the world, and providing a better quality of life and reducing mortality through effective pharmacological treatment remains a challenge. Among malignant tumor types, squamous cell carcinoma-esophageal cancer (EC) is usually located in the mouth, with approximately 90% located mainly on the tongue and floor of the mouth. Piplartine is an alkamide found in certain species of the genus Piper and presents many pharmacological properties including antitumor activity. In the present study, the cytotoxic potential of a collection of piplartine analogs against human oral SCC9 carcinoma cells was evaluated. The analogs were prepared via Fischer esterification reactions, alkyl and aryl halide esterification, and a coupling reaction with PyBOP using the natural compound 3,4,5-trimethoxybenzoic acid as a starting material. The products were structurally characterized using 1H and 13C nuclear magnetic resonance, infrared spectroscopy, and high-resolution mass spectrometry for the unpublished compounds. The compound 4-methoxy-benzyl 3,4,5-trimethoxybenzoate (9) presented an IC50 of 46.21 µM, high selectively (SI > 16), and caused apoptosis in SCC9 cancer cells. The molecular modeling study suggested a multi-target mechanism of action for the antitumor activity of compound 9 with CRM1 as the main target receptor.


Assuntos
Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Linhagem Celular Tumoral , Neoplasias Bucais/tratamento farmacológico , Qualidade de Vida , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Piperidonas/farmacologia
17.
J Cell Mol Med ; 26(19): 5044-5053, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36052734

RESUMO

In patients with ANCA-associated vasculitis, interactions between neutrophils and endothelial cells cause endothelial damage and imbalance. Endothelial colony-forming cells (ECFCs) represent a cellular population of the endothelial lineage with proliferative capacity and vasoreparative properties. This study aimed to evaluate the angiogenic capacity of ECFCs of patients with granulomatosis with polyangiitis (GPA). The ECFCs of 13 patients with PR3-positive GPA and 14 healthy controls were isolated and characterized using fluorescence-activated cell sorting, capillary tube formation measurement, scratching assays and migration assays with and without plasma stimulation. Furthermore, three patients with active disease underwent post-treatment recollection of ECFCs for longitudinal evaluation. The ECFCs from the patients and controls showed similar capillary structure formation. However, the ECFCs from the patients with inactive GPA exhibited early losses of angiogenic capacity. Impairments in the migration capacities of the ECFCs were also observed in patients with GPA and controls (12th h, p = 0.05). Incubation of ECFCs from patients with GPA in remission with plasma from healthy controls significantly decreased migration capacity (p = 0.0001). Longitudinal analysis revealed that treatment significantly lowered ECFC migration rates. This study revealed that ECFCs from the patients with PR3-positive GPA in remission demonstrated early losses of tube formation and reduced migration capacity compared to those of the healthy controls, suggesting impairment of endothelial function.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Granulomatose com Poliangiite , Células Cultivadas , Células Endoteliais/fisiologia , Humanos
18.
Neurobiol Dis ; 168: 105696, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35321855

RESUMO

Synucleinopathies are a group of progressive neurodegenerative diseases known for the accumulation of insoluble aggregates containing the protein alpha-synuclein (aSyn). Recently, it has been assumed that pathology spreads in the brain during disease progression, implying that, at some point in the process, aSyn may exist outside of cells. In this context, extracellular-aSyn (e-aSyn) might transduce signals to the inside of the cells it interacts with, and/or be internalized by different types of cells through the extracellular matrix. Both negatively charged lipids and membrane receptors have been hypothesized as modulators of the loss of cellular homeostasis and cytotoxicity, and of the internalization of e-aSyn. Internalized e-aSyn causes the disruption of multiple cellular processes such as the autophagy lysosomal pathway (ALP), mitochondrial function, endoplasmic reticulum (ER)-stress, UPR activation, or vesicular transport. These processes happen not only in neurons but also in glial cells, activating inflammatory or anti-inflammatory pathways that can affect both neuronal function and survival, thereby affecting disease progression. In this review, we explore possible effects e-aSyn, all the way from the extracellular matrix to the nucleus. In particular, we highlight the glial-neuronal relationship as this is particularly relevant in the context of the spreading of aSyn pathology in synucleinopathies.


Assuntos
Sinucleinopatias , alfa-Sinucleína , Progressão da Doença , Humanos , Lisossomos/metabolismo , Neurônios/metabolismo , alfa-Sinucleína/metabolismo
19.
Crit Care Med ; 50(9): e696-e706, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35191411

RESUMO

OBJECTIVES: Ventilator-induced lung injury (VILI) is a major contributor to morbidity and mortality in critically ill patients. Mechanical damage to the lungs is potentially aggravated by the activation of the renin-angiotensin system (RAS). This article describes RAS activation profiles in VILI and discusses the effects of angiotensin (Ang) 1-7 supplementation or angiotensin-converting enzyme (ACE) inhibition with captopril as protective strategies. DESIGN: Animal study. SETTING: University research laboratory. SUBJECTS: C57BL/6 mice. INTERVENTIONS: Anesthetized mice ( n = 12-18 per group) were mechanically ventilated with low tidal volume (LV T , 6 mL/kg), high tidal volume (HV T , 15 mL/kg), or very high tidal volume (VHV T , 30 mL/kg) for 4 hours, or killed after 3 minutes (sham). Additional VHV T groups received infusions of 60 µg/kg/hr Ang 1-7 or a single dose of 100 mg/kg captopril. MEASUREMENTS AND MAIN RESULTS: VILI was characterized by increased bronchoalveolar lavage fluid levels of interleukin (IL)-6, keratinocyte-derived cytokine, and macrophage inflammatory protein-2 (MIP2). The Ang metabolites in plasma measured with liquid chromatography tandem mass spectrometry showed a strong activation of the classical (Ang I, Ang II) and alternative RAS (Ang 1-7, Ang 1-5), with highest concentrations found in the HV T group. Although the lung-tissue ACE messenger RNA expression was unchanged, its protein expression showed a dose-dependent increase under mechanical ventilation. The ACE2 messenger RNA expression decreased in all ventilated groups, whereas ACE2 protein levels remained unchanged. Both captopril and Ang 1-7 led to markedly increased Ang 1-7 plasma levels, decreased Ang II levels, and ACE activity (Ang II/Ang I ratio), and effectively prevented VILI. CONCLUSIONS: VILI is accompanied by a strong activation of the RAS. Based on circulating Ang metabolite levels and tissue expression of RAS enzymes, classical ACE-dependent and alternative RAS cascades were activated in the HV T group, whereas classical RAS activation prevailed with VHV T ventilation. Ang 1-7 or captopril protected from VILI primarily by modifying the systemic RAS profile.


Assuntos
Sistema Renina-Angiotensina , Lesão Pulmonar Induzida por Ventilação Mecânica , Angiotensina II , Animais , Captopril/metabolismo , Captopril/farmacologia , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Sistema Renina-Angiotensina/fisiologia , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
20.
Basic Res Cardiol ; 117(1): 42, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008727

RESUMO

Sympathetic nerve denervation after myocardial infarction (MI) predicts risk of sudden cardiac death. Therefore, therapeutic approaches limit infarct size, improving adverse remodeling and restores sympathetic innervation have a great clinical potential. Remote ischemic perconditioning (RIPerc) could markedly attenuate MI-reperfusion (MIR) injury. In this study, we aimed to assess its effects on cardiac sympathetic innervation and metabolism. Transient myocardial ischemia is induced by ligature of the left anterior descending coronary artery (LAD) in male Sprague-Dawley rats, and in vivo cardiac 2-[18F]FDG and [11C]mHED PET scans were performed at 14-15 days after ischemia. RIPerc was induced by three cycles of 5-min-long unilateral hind limb ischemia and intermittent 5 min of reperfusion during LAD occlusion period. The PET quantitative parameters were quantified in parametric polar maps. This standardized format facilitates the regional radioactive quantification in deficit regions to remote areas. The ex vivo radionuclide distribution was additionally identified using autoradiography. Myocardial neuron density (tyrosine hydroxylase positive staining) and chondroitin sulfate proteoglycans (CSPG, inhibiting neuron regeneration) expression were assessed by immunohistochemistry. There was no significant difference in the mean hypometabolism 2-[18F]FDG uptake ratio (44.6 ± 4.8% vs. 45.4 ± 4.4%) between MIR rats and MIR + RIPerc rats (P > 0.05). However, the mean [11C]mHED nervous activity of denervated myocardium was significantly elevated in MIR + RIPerc rats compared to the MIR rats (35.9 ± 7.1% vs. 28.9 ± 2.3%, P < 0.05), coupled with reduced denervated myocardium area (19.5 ± 5.3% vs. 27.8 ± 6.6%, P < 0.05), which were associated with preserved left-ventricular systolic function, a less reduction in neuron density, and a significant reduction in CSPG and CD68 expression in the myocardium. RIPerc presented a positive effect on cardiac sympathetic-nerve innervation following ischemia, but showed no significant effect on myocardial metabolism.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Fluordesoxiglucose F18 , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa