Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Robot ; 33(1): 227-233, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29230134

RESUMO

Magnet-tipped, elastic rods can be steered by an external magnetic field to perform surgical tasks. Such rods could be useful for a range of new medical applications because they do not require either pull wires or other bulky mechanisms that are problematic in small anatomical regions. However, current magnetic rod steering systems are large and expensive. Here, we describe a method to guide a rod using a robot-manipulated magnet located near a patient. We solve for rod deflections by combining permanent-magnet models with a Kirchhoff elastic rod model and use a resolved-rate approach to compute trajectories. Experiments show that three-dimensional trajectories can be executed accurately without feedback and that the system's redundancy can be exploited to avoid obstacles.

2.
Int J Med Robot ; 20(1): e2609, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38536718

RESUMO

BACKGROUND: Cochlear-implant electrode arrays (EAs) are currently inserted with limited feedback, and impedance sensing has recently shown promise for EA localisation. METHODS: We investigate the use of impedance sensing to infer the progression of an EA during insertion. RESULTS: We show that the access resistance component of bipolar impedance sensing can detect when a straight EA reaches key anatomical locations in a plastic cochlea and when each electrode contact enters/exits the cochlea. We also demonstrate that dual-sided electrode contacts can provide useful proximity information and show the real-time relationship between impedance and wall proximity in a cadaveric cochlea for the first time. CONCLUSION: The access resistance component of bipolar impedance sensing has high potential for estimating positioning information of EAs relative to anatomy during insertion. Main limitations of this work include using saline as a surrogate for human perilymph in ex vivo models and using only one type of EA.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Impedância Elétrica , Cóclea/cirurgia , Eletrodos Implantados
3.
Int J Comput Assist Radiol Surg ; 18(3): 413-421, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36331796

RESUMO

PURPOSE: During traditional insertion of cochlear implant (CI) electrode arrays (EAs), surgeons rely on limited tactile feedback and visualization of the EA entering the cochlea to control the insertion. One insertion approach for precurved EAs involves slightly overinserting the EA and then retracting it slightly to achieve closer hugging of the modiolus. In this work, we investigate whether electrical impedance sensing could be a valuable real-time feedback tool to advise this pullback technique. METHODS: Using a to-scale 3D-printed scala tympani model, a robotic insertion tool, and a custom impedance sensing system, we performed experiments to assess the bipolar insertion impedance profiles for a cochlear CI532/632 precurved EA. Four pairs of contacts from the 22 electrode contacts were chosen based on preliminary testing and monitored in real time to halt the robotic insertion once the closest modiolar position had been achieved but prior to when the angular insertion depth (AID) would be reduced. RESULTS: In this setting, the open-loop robotic insertion impedance profiles were very consistent between trials. The exit of each contact from the external stylet of this EA was clearly discernible on the impedance profile. In closed-loop experiments using the pullback technique, the average distance from the electrode contacts to the modiolus was reduced without greatly affecting the AID by using impedance feedback in real time to determine when to stop EA retraction. CONCLUSION: Impedance sensing, and specifically the access resistance component of impedance, could be a valuable real-time feedback tool in the operating room during CI EA insertion. Future work should more thoroughly analyze the effects of more realistic operating room conditions and inter-patient variability on this technique.


Assuntos
Implante Coclear , Implantes Cocleares , Procedimentos Cirúrgicos Robóticos , Humanos , Impedância Elétrica , Retroalimentação , Cóclea/cirurgia , Implante Coclear/métodos , Eletrodos Implantados
4.
IEEE Trans Biomed Eng ; 69(2): 718-724, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34379586

RESUMO

OBJECTIVE: Surgeons have no direct objective feedback on cochlear-implant electrode array (EA) positioning during insertion, yet optimal hearing outcomes are contingent on placing the EA as close as feasible to viable neural endings. This paper describes a system to non-invasively determine intracochlear positioning of an EA, without requiring any modifications to existing commercial EAs themselves. METHODS: Electrical impedance has been suggested as a way to measure EA proximity to the inner wall of the cochlea that houses auditory nerve endings-the modiolus. In this paper, we extend prior work and demonstrate for the first time the relationship between bipolar access resistance and proximity of the EA to the modiolus (E-M proximity). We also evaluate two methods for producing direct, real-time estimates of E-M proximity from bipolar impedance measurements. RESULTS: We show that bipolar access resistance is highly correlated with E-M proximity and can be approximately modeled by a power law function. This one dimensional model is shown to be capable of producing accurate real-time estimates of E-M proximity, but its simplicity also limits the potential for future improvement. To address this challenge, we propose a new prediction approach based on a recurrent neural network, which generated an overall prediction accuracy of 93.7%. CONCLUSION: Bipolar access resistance is highly correlated with E-M proximity, and can be used to estimate EA positioning. SIGNIFICANCE: This work shows how impedance sensing can be used to localize an EA during insertion into the small, enclosed cochlear environment, without requiring any modifications to existing clinically used EAs.


Assuntos
Implante Coclear , Implantes Cocleares , Cóclea/cirurgia , Implante Coclear/métodos , Impedância Elétrica , Eletrodos Implantados
5.
Otol Neurotol ; 42(7): 1022-1030, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33859137

RESUMO

HYPOTHESIS: Undesirable forces applied to the basilar membrane during surgical insertion of lateral-wall cochlear-implant electrode arrays (EAs) can be reduced via robotic insertion with magnetic steering of the EA tip. BACKGROUND: Robotic insertion of magnetically steered lateral-wall EAs has been shown to reduce insertion forces in vitro and in cadavers. No previous study of robot-assisted insertion has considered force on the basilar membrane. METHODS: Insertions were executed in an open-channel scala-tympani phantom. A force plate, representing the basilar membrane, covered the channel to measure forces in the direction of the basilar membrane. An electromagnetic source generated a magnetic field to steer investigational EAs with permanent magnets at their tips, while a robot performed the insertion. RESULTS: When magnetic steering was sufficient to pull the tip of the EA off of the lateral wall of the channel, it resulted in at least a 62% reduction of force on the phantom basilar membrane at insertion depths beyond 14.4 mm (p < 0.05), and these beneficial effects were maintained beyond approximately the same depth, even with 10 degrees of error in the estimation of the modiolar axis of the cochlea. When magnetic steering was not sufficient to pull the EA tip off of the lateral wall, a significant difference from the no-magnetic-steering case was not found. CONCLUSIONS: This in vitro study suggests that magnetic steering of robotically inserted lateral-wall cochlear-implant EAs, given sufficient steering magnitude, can reduce forces on the basilar membrane in the first basilar turn compared with robotic insertion without magnetic steering.


Assuntos
Implante Coclear , Implantes Cocleares , Membrana Basilar , Cóclea/cirurgia , Eletrodos Implantados , Humanos , Fenômenos Magnéticos
6.
IEEE Robot Autom Lett ; 5(2): 2240-2247, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34621979

RESUMO

Cochlear-implant electrode arrays (EAs) must be inserted accurately and precisely to avoid damaging the delicate anatomical structures of the inner ear. It has previously been shown on the benchtop that using magnetic fields to steer magnet-tipped EAs during insertion reduces insertion forces, which correlate with insertion errors and damage to internal cochlear structures. This paper presents several advancements toward the goal of deploying magnetic steering of cochlear-implant EAs in the operating room. In particular, we integrate image guidance with patient-specific insertion vectors, we incorporate a new nonmagnetic insertion tool, and we use an electromagnetic source, which provides programmable control over the generated field. The electromagnet is safer than prior permanent-magnet approaches in two ways: it eliminates motion of the field source relative to the patient's head and creates a field-free source in the power-off state. Using this system, we demonstrate system feasibility by magnetically steering EAs into a cadaver cochlea for the first time. We show that magnetic steering decreases average insertion forces, in comparison to manual insertions and to image-guided robotic insertions alone.

7.
J Med Device ; 6(4): 410071-410077, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23904905

RESUMO

Accessing a specific, predefined location identified in medical images is a common interventional task for biopsies and drug or therapy delivery. While conventional surgical needles provide little steerability, concentric tube continuum devices enable steering through curved trajectories. These devices are usually developed as robotic systems. However, manual actuation of concentric tube devices is particularly useful for initial transfer into the clinic since the Food and Drug Administration (FDA) and Institutional Review Board (IRB) approval process of manually operated devices is simple compared to their motorized counterparts. In this paper, we present a manual actuation device for the deployment of steerable cannulas. The design focuses on compactness, modularity, usability, and sterilizability. Further, the kinematic mapping from joint space to Cartesian space is detailed for an example concentric tube device. Assessment of the device's accuracy was performed in free space, as well as in an image-guided surgery setting, using tracked 2D ultrasound.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa