Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Haematologica ; 106(6): 1624-1635, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467137

RESUMO

A major challenge in the development of a gene therapy for hemophilia A (HA) is the selection of cell type- or tissue-specific promoters to ensure factor VIII (FVIII) expression without eliciting an immune response. As liver sinusoidal endothelial cells (LSECs) are the major FVIII source, understanding the transcriptional F8 regulation in these cells would help optimize the minimal F8 promoter (pF8) to efficiently drive FVIII expression. In silico analyses predicted several binding sites (BS) for the E26 transformation-specific (Ets) transcription factors Ets-1 and Ets-2 in the pF8. Reporter assays demonstrated a significant up-regulation of pF8 activity by Ets-1 or Ets-1/Est-2 combination, while Ets2 alone was ineffective. Moreover, Ets-1/Ets-2-DNA binding domain mutants (DBD) abolished promoter activation only when the Ets-1 DBD was removed, suggesting that pF8 up-regulation may occur through Ets-1/Ets-2 interaction with Ets-1 bound to DNA. pF8 carrying Ets-BS deletions unveiled two Ets-BS essential for pF8 activity and response to Ets overexpression. Lentivirus-mediated delivery of GFP or FVIII cassettes driven by the shortened promoters led to GFP expression mainly in endothelial cells in the liver and to long-term FVIII activity without inhibitor formation in HA mice. These data strongly support the potential application of these promoters in HA gene therapy.


Assuntos
Fator VIII , Hemofilia A , Animais , Células Endoteliais , Fator VIII/genética , Terapia Genética , Hemofilia A/genética , Hemofilia A/terapia , Lentivirus/genética , Camundongos
2.
Mol Ther ; 25(8): 1815-1830, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28552407

RESUMO

Hemophilia A (HA) is an X-linked bleeding disease caused by factor VIII (FVIII) deficiency. We previously demonstrated that FVIII is produced specifically in liver sinusoid endothelial cells (LSECs) and to some degree in myeloid cells, and thus, in the present work, we seek to restrict the expression of FVIII transgene to these cells using cell-specific promoters. With this approach, we aim to limit immune response in a mouse model by lentiviral vector (LV)-mediated gene therapy encoding FVIII. To increase the target specificity of FVIII expression, we included miRNA target sequences (miRTs) (i.e., miRT-142.3p, miRT-126, and miRT-122) to silence expression in hematopoietic cells, endothelial cells, and hepatocytes, respectively. Notably, we report, for the first time, therapeutic levels of FVIII transgene expression at its natural site of production, which occurred without the formation of neutralizing antibodies (inhibitors). Moreover, inhibitors were eradicated in FVIII pre-immune mice through a regulatory T cell-dependent mechanism. In conclusion, targeting FVIII expression to LSECs and myeloid cells by using LVs with cell-specific promoter minimized off-target expression and immune responses. Therefore, at least for some transgenes, expression at the physiologic site of synthesis can enhance efficacy and safety, resulting in long-term correction of genetic diseases such as HA.


Assuntos
Hemofilia A/genética , Hemofilia A/imunologia , Tolerância Imunológica/genética , Terapia de Imunossupressão , Animais , Antígeno CD11b/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fator VIII/genética , Fator VIII/imunologia , Fator VIII/metabolismo , Expressão Gênica , Genes Reporter , Vetores Genéticos/genética , Imunização , Terapia de Imunossupressão/métodos , Isoanticorpos/sangue , Isoanticorpos/imunologia , Lentivirus/genética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transdução Genética , Transgenes , Tempo de Coagulação do Sangue Total
3.
J Thromb Haemost ; 18(5): 1050-1064, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32078252

RESUMO

BACKGROUND: We have identified a synonymous F8 variation in a severe hemophilia A (HA) patient who developed inhibitors following factor VIII (FVIII) prophylaxis. The unreported c.6273 G > A variant targets the consensus splicing site of exon 21. OBJECTIVES: To determine the impact of c.6273 G > A nucleotide substitution on F8 splicing and its translated protein. METHODS: Patient peripheral blood mononuclear cells were isolated and differentiated into monocyte-derived macrophages (MDMs). FVIII distribution in cell compartments was evaluated by immunofluorescence. The splicing of mutated exon 21 was assessed by exon trapping. Identified FVIII splicing variants were generated by site-directed mutagenesis, inserted into a lentiviral vector (LV) to transduce Chinese hamster ovary (CHO) cells, and inject into B6/129 HA-mice. FVIII activity was assessed by activated partial thromboplastin time, whereas anti-FVIII antibodies and FVIII antigen, by ELISA. RESULTS: HA-MDMs demonstrated a predominant retention of FVIII around the endoplasmic reticulum. Exon trapping revealed the production of two isoforms: one retaining part of intron 21 and the other skipping exon 21. These variants, predicted to truncate FVIII in the C1 domain, were detected in the patient. CHO cells transduced with the two FVIII transcripts confirmed protein retention and absence of the C2 domain. HA mice injected with LV carrying FVIII mutants, partially recovered FVIII activity without the appearance of anti-FVIII antibodies. CONCLUSIONS: Herein, we demonstrate the aberrant impact of a FVIII synonymous mutation on its transcription, activity, and pathological outcomes. Our data underline the importance of increasing the knowledge regarding the functional consequences of F8 mutations and their link to inhibitor development and an effective replacement therapy.


Assuntos
Hemofilia A , Animais , Células CHO , Cricetinae , Cricetulus , Fator VIII/genética , Fator VIII/metabolismo , Hemofilia A/genética , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , Splicing de RNA
4.
Blood Adv ; 3(5): 825-838, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862611

RESUMO

Here we describe a successful gene therapy approach for hemophilia A (HA), using the natural F8 promoter (pF8) to direct gene replacement to factor VIII (FVIII)-secreting cells. The promoter sequence and the regulatory elements involved in the modulation of F8 expression are still poorly characterized and biased by the historical assumption that FVIII expression is mainly in hepatocytes. Bioinformatic analyses have highlighted an underestimated complexity in gene expression at this locus, suggesting an activation of pF8 in more cell types than those previously expected. C57Bl/6 mice injected with a lentiviral vector expressing green fluorescent protein (GFP) under the pF8 (lentiviral vector [LV].pF8.GFP) confirm the predominant GFP expression in liver sinusoidal endothelial cells, with a few positive cells detectable also in hematopoietic organs. Therapeutic gene delivery (LV.pF8.FVIII) in hemophilic C57/Bl6 and 129-Bl6 mice successfully corrected the bleeding phenotype, rescuing up to 25% FVIII activity, using a codon-optimized FVIII, with sustained activity for the duration of the experiment (1 year) without inhibitor formation. Of note, LV.pF8.FVIII delivery in FVIII-immunized HA mice resulted in the complete reversion of the inhibitor titer with the recovery of therapeutic FVIII activity. Depletion of regulatory T cells (Tregs) in LV-treated mice allowed the formation of anti-FVIII antibodies, indicating a role for Tregs in immune tolerance induction. The significant blood loss reduction observed in all LV.pF8.FVIII-treated mice 1 year after injection confirmed the achievement of a long-term phenotypic correction. Altogether, our results highlight the potency of pF8-driven transgene expression to correct the bleeding phenotype in HA, as well as potentially in other diseases in which an endothelial-specific expression is required.


Assuntos
Fator VIII/administração & dosagem , Terapia Genética/métodos , Hemofilia A/terapia , Animais , Modelos Animais de Doenças , Fator VIII/genética , Fator VIII/uso terapêutico , Proteínas de Fluorescência Verde , Tolerância Imunológica , Lentivirus , Camundongos , Regiões Promotoras Genéticas , Linfócitos T Reguladores/imunologia
5.
J Steroid Biochem Mol Biol ; 182: 37-49, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29684480

RESUMO

Vitamin D (VD) deficiency (VDD) correlates to obesity, with VD a recognized mediator of metabolic diseases. From a previous proteomic study identifying adiponectin as a link between VDD and pediatric obesity, herein we analysed another protein (SSP2301) increased with VDD. A focused 2D-electrophoretic analysis identified 4 corresponding plasma proteins, with one predicted to be fetuin B (FETUB). FETUB was studied due to its emerging role in metabolic diseases and cytogenetic location (3q27.3) with adiponectin. Results were confirmed in obese children, where plasma FETUB was higher with VDD. A direct effect by 1α,25-(OH)2D3 on hepatocellular FETUB synthesis was observed, with a time and dose dependent reduction. Further, we demonstrated the VD-receptor (VDR) is key, with FETUB "released" with VDR silencing. Finally, VD supplementation (6weeks) to juvenile mice fed a standard diet, reduced plasma FETUB. Only at 22weeks did liver FETUB correspond to plasma FETUB, highlighting the contribution of other VD-responsive tissues. Overall, FETUB is a key protein linking VDD to pediatric obesity. With an emerging role in metabolic diseases, we demonstrate that VD/VDR directly regulate FETUB.


Assuntos
Fetuína-B/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Obesidade Infantil/complicações , Deficiência de Vitamina D/complicações , Vitamina D/farmacologia , Adolescente , Animais , Criança , Pré-Escolar , Fetuína-B/genética , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade Infantil/tratamento farmacológico , Obesidade Infantil/metabolismo , Proteômica , Receptores de Calcitriol/metabolismo , Estudos Retrospectivos , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/metabolismo , Vitaminas/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa