Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 168(11): 283, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904060

RESUMO

Large DNA viruses in the phylum Nucleocytoviricota, sometimes referred to as "giant viruses" owing to their large genomes and virions, have been the subject of burgeoning interest over the last decade. Here, we describe recently adopted taxonomic updates for giant viruses within the order Imitervirales. The families Allomimiviridae, Mesomimiviridae, and Schizomimiviridae have been created to accommodate the increasing diversity of mimivirus relatives that have sometimes been referred to in the literature as "extended Mimiviridae". In addition, the subfamilies Aliimimivirinae, Megamimivirinae, and Klosneuvirinae have been established to refer to subgroups of the Mimiviridae. Binomial names have also been adopted for all recognized species in the order. For example, Acanthamoeba polyphaga mimivirus is now classified in the species Mimivirus bradfordmassiliense.


Assuntos
Vírus Gigantes , Mimiviridae , Humanos , Vírus Gigantes/genética , Vírus de DNA/genética , Mimiviridae/genética , Genoma Viral , Vírion
2.
J Gen Virol ; 103(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36394457

RESUMO

Spinareoviridae is a large family of icosahedral viruses that are usually regarded as non-enveloped with segmented (9-12 linear segments) dsRNA genomes of 23-29 kbp. Spinareovirids have a broad host range, infecting animals, fungi and plants. Some have important pathogenic potential for humans (e.g. Colorado tick fever virus), livestock (e.g. avian orthoreoviruses), fish (e.g. aquareoviruses) and plants (e.g. rice ragged stunt virus and rice black streaked dwarf virus). This is a summary of the ICTV Report on the family Spinareoviridae, which is available at ictv.global/report/spinareoviridae.


Assuntos
Fungos , RNA de Cadeia Dupla , Animais , Humanos , Plantas , Especificidade de Hospedeiro , Filogenia
3.
J Gen Virol ; 103(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215107

RESUMO

Sedoreoviridae is a large family of icosahedral viruses that are usually regarded as non-enveloped with segmented (10-12 linear segments) dsRNA genomes of 18-26 kbp. Sedoreovirids have a broad host range, infecting mammals, birds, crustaceans, arthropods, algae and plants. Some of them have important pathogenic potential for humans (e.g. rotavirus A), livestock (e.g. bluetongue virus) and plants (e.g. rice dwarf virus). This is a summary of the ICTV Report on the family Sedoreoviridae, which is available at ictv.global/report/sedoreoviridae.


Assuntos
Mamíferos , RNA de Cadeia Dupla , Animais , Aves , Genoma Viral , Humanos , Plantas , Vírion , Replicação Viral
4.
Environ Microbiol ; 21(6): 2171-2181, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30969467

RESUMO

Viruses and microzooplankton grazers represent major sources of mortality for marine phytoplankton and bacteria, redirecting the flow of organic material throughout the world's oceans. Here, we investigate the use of nonlinear population models of interactions between phytoplankton, viruses and grazers as a means to quantitatively constrain the flow of carbon through marine microbial ecosystems. We augment population models with a synthesis of laboratory-based estimates of prey, predator and viral life history traits that constrain transfer efficiencies. We then apply the model framework to estimate loss rates in the California Current Ecosystem (CCE). With our empirically parameterized model, we estimate that, of the total losses mediated by viruses and microzooplankton grazing at the focal CCE site, 22 ± 3%, 46 ± 27%, 3 ± 2% and 29 ± 20% were directed to grazers, sloppy feeding (as well as excretion and respiration), viruses and viral lysate respectively. We identify opportunities to leverage ecosystem models and conventional mortality assays to further constrain the quantitative rates of critical ecosystem processes.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Fitoplâncton/metabolismo , Vírus/metabolismo , California , Ecossistema , Oceanos e Mares
5.
Environ Microbiol ; 21(6): 1942-1956, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30251319

RESUMO

Cylindrospermopsis (Raphidiopsis) raciborskii is an invasive, filamentous, nitrogen-fixing cyanobacterium that forms frequent blooms in freshwater habitats. While viruses play key roles in regulating the abundance, production and diversity of their hosts in aquatic ecosystems, the role(s) of viruses in the ecology of C. raciborskii is almost unexplored. Progress in this field has been hindered by the absence of a characterized virus-host system in C. raciborskii. To bridge this gap, we sequenced the genome of CrV-01T, a previously isolated cyanosiphovirus, and its host, C. raciborskii strain Cr2010. Analyses suggest that CrV-01T represents a distinct clade of siphoviruses infecting, and perhaps lysogenizing, filamentous cyanobacteria. Its genome contains unique features that include an intact CRISPR array and a 12 kb inverted duplication. Evidence suggests CrV-01T recently gained the ability to infect Cr2010 and recently lost the ability to form lysogens. The cyanobacterial host contains a CRISPR-Cas system with CRISPR spacers matching protospacers within the inverted duplication of the CrV-01T genome. Examination of metagenomes demonstrates that viruses with high genetic identity to CrV-01T, but lacking the inverted duplication, are present in C. raciborskii blooms in Australia. The unique genomic features of the CrV/Cr2010 system offers opportunities to investigate in more detail virus-host interactions in an ecologically important bloom-forming cyanobacterium.


Assuntos
Cianobactérias/virologia , Especificidade de Hospedeiro , Vírus/isolamento & purificação , Austrália , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Cianobactérias/fisiologia , Ecossistema , Água Doce/microbiologia , Água Doce/virologia , Genoma Viral , Genômica , Nitrogênio , Fenômenos Fisiológicos Virais , Vírus/genética
6.
Environ Microbiol ; 19(2): 740-755, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27902869

RESUMO

An 8-year time-series in the Western Antarctic Peninsula (WAP) with an approximately weekly sampling frequency was used to elucidate changes in virioplankton abundance and their drivers in this climatically sensitive region. Virioplankton abundances at the coastal WAP show a pronounced seasonal cycle with interannual variability in the timing and magnitude of the summer maxima. Bacterioplankton abundance is the most influential driving factor of the virioplankton, and exhibit closely coupled dynamics. Sea ice cover and duration predetermine levels of phytoplankton stock and thus, influence virioplankton by dictating the substrates available to the bacterioplankton. However, variations in the composition of the phytoplankton community and particularly the prominence of Diatoms inferred from silicate drawdown, drive interannual differences in the magnitude of the virioplankton bloom; likely again mediated through changes in the bacterioplankton. Their findings suggest that future warming within the WAP will cause changes in sea ice that will influence viruses and their microbial hosts through changes in the timing, magnitude and composition of the phytoplankton bloom. Thus, the flow of matter and energy through the viral shunt may be decreased with consequences for the Antarctic food web and element cycling.


Assuntos
Ecossistema , Vírus/isolamento & purificação , Regiões Antárticas , Organismos Aquáticos , Mudança Climática , Cadeia Alimentar , Camada de Gelo/virologia , Fitoplâncton/genética , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/isolamento & purificação , Estações do Ano , Vírus/classificação , Vírus/genética
7.
Proc Natl Acad Sci U S A ; 110(26): 10800-5, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23754393

RESUMO

Large dsDNA viruses are involved in the population control of many globally distributed species of eukaryotic phytoplankton and have a prominent role in bloom termination. The genus Phaeocystis (Haptophyta, Prymnesiophyceae) includes several high-biomass-forming phytoplankton species, such as Phaeocystis globosa, the blooms of which occur mostly in the coastal zone of the North Atlantic and the North Sea. Here, we report the 459,984-bp-long genome sequence of P. globosa virus strain PgV-16T, encoding 434 proteins and eight tRNAs and, thus, the largest fully sequenced genome to date among viruses infecting algae. Surprisingly, PgV-16T exhibits no phylogenetic affinity with other viruses infecting microalgae (e.g., phycodnaviruses), including those infecting Emiliania huxleyi, another ubiquitous bloom-forming haptophyte. Rather, PgV-16T belongs to an emerging clade (the Megaviridae) clustering the viruses endowed with the largest known genomes, including Megavirus, Mimivirus (both infecting acanthamoeba), and a virus infecting the marine microflagellate grazer Cafeteria roenbergensis. Seventy-five percent of the best matches of PgV-16T-predicted proteins correspond to two viruses [Organic Lake phycodnavirus (OLPV)1 and OLPV2] from a hypersaline lake in Antarctica (Organic Lake), the hosts of which are unknown. As for OLPVs and other Megaviridae, the PgV-16T sequence data revealed the presence of a virophage-like genome. However, no virophage particle was detected in infected P. globosa cultures. The presence of many genes found only in Megaviridae in its genome and the presence of an associated virophage strongly suggest that PgV-16T shares a common ancestry with the largest known dsDNA viruses, the host range of which already encompasses the earliest diverging branches of domain Eukarya.


Assuntos
Genoma Viral , Haptófitas/virologia , Phycodnaviridae/genética , Mapeamento Cromossômico , Duplicação Gênica , Haptófitas/ultraestrutura , Dados de Sequência Molecular , Phycodnaviridae/classificação , Phycodnaviridae/ultraestrutura , Filogenia , Fitoplâncton/ultraestrutura , Fitoplâncton/virologia , Proteoma , Retroelementos , Vírus Satélites/genética , Proteínas Virais/genética
8.
Environ Microbiol ; 17(8): 2910-21, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25728280

RESUMO

Ring-like structures, 2.0-4.8 cm in diameter, observed in photosynthetic microbial mats on the Wadden Sea island Schiermonnikoog (the Netherlands) showed to be the result of the fungus Emericellopsis sp. degrading the photoautotrophic top layer of the mat. The mats were predominantly composed of cyanobacteria and diatoms, with large densities of bacteria and viruses both in the top photosynthetic layer and in the underlying sediment. The fungal attack cleared the photosynthetic layer; however, no significant effect of the fungal lysis on the bacterial and viral abundances could be detected. Fungal-mediated degradation of the major photoautotrophs could be reproduced by inoculation of non-infected mat with isolated Emericellopsis sp., and with an infected ring sector. Diatoms were the first re-colonizers followed closely by cyanobacteria that after about 5 days dominated the space. The study demonstrated that the fungus Emericellopsis sp. efficiently degraded a photoautotrophic microbial mat, with potential implications for mat community composition, spatial structure and productivity.


Assuntos
Cianobactérias/metabolismo , Diatomáceas/metabolismo , Fungos/metabolismo , Hypocreales/metabolismo , Consórcios Microbianos/fisiologia , Países Baixos , Fotossíntese/fisiologia , Vírus
9.
Appl Environ Microbiol ; 81(6): 2149-55, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25595761

RESUMO

Viral abundances in benthic environments are the highest found in aquatic systems. Photosynthetic microbial mats represent benthic environments with high microbial activity and possibly high viral densities, yet viral abundances have not been examined in such systems. Existing extraction procedures typically used in benthic viral ecology were applied to the complex matrix of microbial mats but were found to inefficiently extract viruses. Here, we present a method for extraction and quantification of viruses from photosynthetic microbial mats using epifluorescence microscopy (EFM) and flow cytometry (FCM). A combination of EDTA addition, probe sonication, and enzyme treatment applied to a glutaraldehyde-fixed sample resulted in a substantially higher viral (5- to 33-fold) extraction efficiency and reduced background noise compared to previously published methods. Using this method, it was found that in general, intertidal photosynthetic microbial mats harbor very high viral abundances (2.8 × 10(10) ± 0.3 × 10(10) g(-1)) compared with benthic habitats (10(7) to 10(9) g(-1)). This procedure also showed 4.5- and 4-fold-increased efficacies of extraction of viruses and bacteria, respectively, from intertidal sediments, allowing a single method to be used for the microbial mat and underlying sediment.


Assuntos
Bactérias/isolamento & purificação , Carga Bacteriana/métodos , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/virologia , Carga Viral/métodos , Vírus/isolamento & purificação , Compostos Alílicos , Citometria de Fluxo/métodos , Microscopia de Fluorescência/métodos , Sulfetos
10.
Appl Environ Microbiol ; 80(10): 3119-27, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24610859

RESUMO

Growth and viral infection of the marine picoeukaryote Micromonas pusilla was studied under a future-ocean scenario of elevated partial CO2 (pCO2; 750 µatm versus the present-day 370 µatm) and simultaneous limitation of phosphorus (P). Independent of the pCO2 level, the ratios of M. pusilla cellular carbon (C) to nitrogen (N), C:P and N:P, increased with increasing P stress. Furthermore, in the P-limited chemostats at growth rates of 0.32 and 0.97 of the maximum growth rate (µmax), the supply of elevated pCO2 led to an additional rise in cellular C:N and C:P ratios, as well as a 1.4-fold increase in M. pusilla abundance. Viral lysis was not affected by pCO2, but P limitation led to a 150% prolongation of the latent period (6 to 12 h) and an 80% reduction in viral burst sizes (63 viruses per cell) compared to P-replete conditions (4 to 8 h latent period and burst size of 320). Growth at 0.32 µmax further prolonged the latent period by another 150% (12 to 18 h). Thus, enhanced P stress due to climate change-induced strengthened vertical stratification can be expected to lead to reduced and delayed virus production in picoeukaryotes. This effect is tempered, but likely not counteracted, by the increase in cell abundance under elevated pCO2. Although the influence of potential P-limitation-relieving factors, such as the uptake of organic P and P utilization during infection, is unclear, our current results suggest that when P limitation prevails in future oceans, picoeukaryotes and grazing will be favored over larger-sized phytoplankton and viral lysis, with increased matter and nutrient flow to higher trophic levels.


Assuntos
Dióxido de Carbono/metabolismo , Clorófitas/crescimento & desenvolvimento , Fosfatos/metabolismo , Fenômenos Fisiológicos Virais , Clorófitas/química , Clorófitas/metabolismo , Clorófitas/virologia , Mudança Climática , Cinética , Nitrogênio/metabolismo , Fósforo/metabolismo
11.
Environ Sci Technol ; 48(16): 9400-11, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25103722

RESUMO

During the first hours after release of petroleum at sea, crude oil hydrocarbons partition rapidly into air and water. However, limited information is available about very early evaporation and dissolution processes. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North Sea. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 µm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the sea surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Hidrocarbonetos/análise , Modelos Teóricos , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise , Peso Molecular , Mar do Norte
12.
Genome Biol ; 25(1): 97, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622738

RESUMO

BACKGROUND: As most viruses remain uncultivated, metagenomics is currently the main method for virus discovery. Detecting viruses in metagenomic data is not trivial. In the past few years, many bioinformatic virus identification tools have been developed for this task, making it challenging to choose the right tools, parameters, and cutoffs. As all these tools measure different biological signals, and use different algorithms and training and reference databases, it is imperative to conduct an independent benchmarking to give users objective guidance. RESULTS: We compare the performance of nine state-of-the-art virus identification tools in thirteen modes on eight paired viral and microbial datasets from three distinct biomes, including a new complex dataset from Antarctic coastal waters. The tools have highly variable true positive rates (0-97%) and false positive rates (0-30%). PPR-Meta best distinguishes viral from microbial contigs, followed by DeepVirFinder, VirSorter2, and VIBRANT. Different tools identify different subsets of the benchmarking data and all tools, except for Sourmash, find unique viral contigs. Performance of tools improved with adjusted parameter cutoffs, indicating that adjustment of parameter cutoffs before usage should be considered. CONCLUSIONS: Together, our independent benchmarking facilitates selecting choices of bioinformatic virus identification tools and gives suggestions for parameter adjustments to viromics researchers.


Assuntos
Benchmarking , Vírus , Metagenoma , Ecossistema , Metagenômica/métodos , Biologia Computacional/métodos , Bases de Dados Genéticas , Vírus/genética
13.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39173010

RESUMO

Complex virus-virus interactions can arise when multiple viruses coinfect the same host, impacting infection outcomes with broader ecological and evolutionary significance for viruses and host. Yet, our knowledge regarding virus competition is still limited, especially for single-celled eukaryotic host-virus systems. Here, we report on mutual interference of two dsDNA viruses, MpoV-45T and MpoV-46T, competing for their Arctic algal host Micromonas polaris. Both viruses affected each other's gene expression and displayed reduced genome replication during coinfection. MpoV-45T was the dominant virus, likely due to interference in the DNA replication of is competitor. Even when its coinfection was delayed, the dominant virus still prevailed while genome production of the other virus was strongly suppressed. This contrasts with typical superinfection exclusion, where the primary infection prevents secondary infection by other viruses. Higher temperature made the suppressed virus a stronger competitor, signifying that global warming is likely to alter virus-virus interactions in Arctic waters.


Assuntos
Vírus de DNA , Regiões Árticas , Vírus de DNA/genética , Temperatura , Replicação Viral , Clorófitas/virologia , Clorófitas/genética , Coinfecção/virologia
14.
Nat Commun ; 15(1): 9192, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39448562

RESUMO

The Southern Ocean microbial ecosystem, with its pronounced seasonal shifts, is vulnerable to the impacts of climate change. Since viruses are key modulators of microbial abundance, diversity, and evolution, we need a better understanding of the effects of seasonality on the viruses in this region. Our comprehensive exploration of DNA viral diversity in the Southern Ocean reveals a unique and largely uncharted viral landscape, of which 75% was previously unidentified in other oceanic areas. We uncover novel viral taxa at high taxonomic ranks, expanding our understanding of crassphage, polinton-like virus, and virophage diversity. Nucleocytoviricota viruses represent an abundant and diverse group of Antarctic viruses, highlighting their potential as important regulators of phytoplankton population dynamics. Our temporal analysis reveals complex seasonal patterns in marine viral communities (bacteriophages, eukaryotic viruses) which underscores the apparent interactions with their microbial hosts, whilst deepening our understanding of their roles in the world's most sensitive and rapidly changing ecosystem.


Assuntos
Fitoplâncton , Estações do Ano , Regiões Antárticas , Fitoplâncton/virologia , Ecossistema , Biodiversidade , Água do Mar/virologia , Água do Mar/microbiologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/classificação , Vírus/classificação , Vírus/genética , Vírus/isolamento & purificação , Oceanos e Mares , Filogenia , Vírus de DNA/genética , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Mudança Climática , Virófagos/genética
15.
bioRxiv ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39282281

RESUMO

Latency is a common strategy in a wide range of viral lineages, but its prevalence in giant viruses remains unknown. Here we describe the activity and viral production from a 617 kbp integrated giant viral element in the model green alga Chlamydomonas reinhardtii. We resolve the integrated viral region using long-read sequencing and show that viral particles are produced and released in otherwise healthy cultures. A diverse array of viral-encoded selfish genetic elements are expressed during GEVE reactivation and produce proteins that are packaged in virions. In addition, we show that field isolates of Chlamydomonas sp. harbor latent giant viruses related to the C. reinhardtii GEVE that exhibit similar infection dynamics, demonstrating that giant virus latency is prevalent in natural host communities. Our work reports the largest temperate virus documented to date and the first active GEVE identified in a unicellular eukaryote, substantially expanding the known limits of viral latency.

16.
Microorganisms ; 12(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38257858

RESUMO

The field of aquatic viral ecology has continued to evolve rapidly over the last three decades [...].

17.
Nat Microbiol ; 8(2): 332-346, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702941

RESUMO

Virophages are small double stranded DNA (dsDNA) viruses that can only replicate in a host by co-infecting with another virus. Marine algae are commonly associated with virophage-like elements such as Polinton-like viruses (PLVs) that remain largely uncharacterized. Here we isolated a PLV that co-infects the alga Phaeocystis globosa with the Phaeocystis globosa virus-14T (PgV-14T), a close relative of the "Phaeocystis globosa virus-virophage" genomic sequence. We name this PLV 'Gezel-14T. Gezel is phylogenetically distinct from the Lavidaviridae family where all known virophages belong. Gezel-14T co-infection decreases the fitness of its viral host by reducing burst sizes of PgV-14T, yet insufficiently to spare the cellular host population. Genomic screens show Gezel-14T-like PLVs integrated into Phaeocystis genomes, suggesting that these widespread viruses are capable of integration into cellular host genomes. This system presents an opportunity to better understand the evolution of eukaryotic dsDNA viruses as well as the complex dynamics and implications of viral parasitism.


Assuntos
Haptófitas , Phycodnaviridae , Vírus , Virófagos/genética , Filogenia , Genoma Viral/genética , Vírus/genética , Phycodnaviridae/genética , Haptófitas/genética
18.
Appl Environ Microbiol ; 78(18): 6741-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22798377

RESUMO

Lytic and lysogenic viral infection was investigated throughout the Southern Ocean at sites spanning the sub-Antarctic zone, the Antarctic Circumpolar Current, and an Antarctic continental sea. Higher lytic virus activity was recorded in the more productive sub-Antarctic zone than in the iron-limited waters of the Antarctic Circumpolar Current during two transects. Reduced lytic viral activity in the Antarctic Circumpolar Current was combined with a shift toward lysogenic infection, probably resulting from the lower concentration of potential prokaryotic hosts. Superimposed on this variation, lytic viral production was lower in a transect completed in the Drake Passage in autumn (1.8 × 10(8) to 1.5 × 10(9) liter(-1) day(-1)) than over the Greenwich Meridian during summer (5.1 × 10(8) to 2.0 × 10(10) cells liter(-1) day(-1)), indicating that viral activity is linked to the overall seasonal fluctuations in biotic activity. Interestingly, while prokaryotic abundance was lowest in the coastal Weddell Sea, levels of bacterial and lytic viral production (4.3 × 10(8) to 1.7 × 10(10) cells liter(-1) day(-1)) in this area were similar to those of the other zones. This may explain the weak relationship between the distribution of prokaryotes and chlorophyll in the Weddell Sea, as a high turnover of prokaryotic biomass may have been stimulated by the availability of substrates in the form of viral lysate. With estimated carbon and iron releases of 0.02 to 7.5 µg liter(-1) day(-1) and 1.5 to 175.7 pg liter(-1) day(-1), respectively, viral activity in the Southern Ocean is shown to be a major contributor to satisfying the elemental requirements of microbes, notably prokaryotes in the Weddell Sea and phytoplankton in the sub-Antarctic zone.


Assuntos
Bactérias/isolamento & purificação , Bactérias/virologia , Bacteriólise , Bacteriófagos/isolamento & purificação , Lisogenia , Microbiologia da Água , Regiões Antárticas , Biomassa , Carbono/metabolismo , Ferro/metabolismo , Oceanos e Mares , Estações do Ano
19.
Appl Environ Microbiol ; 78(10): 3638-48, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22407688

RESUMO

Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity.


Assuntos
Bactérias Aeróbias/metabolismo , Biofilmes/crescimento & desenvolvimento , Biota , Diatomáceas/metabolismo , Hidrocarbonetos/metabolismo , Microbiologia do Solo , Microbiologia da Água , Bactérias Aeróbias/classificação , Bactérias Aeróbias/genética , Bactérias Aeróbias/fisiologia , Biotransformação , Diatomáceas/classificação , Diatomáceas/genética , Diatomáceas/fisiologia , Dados de Sequência Molecular , Análise de Sequência de DNA
20.
Harmful Algae ; 117: 102292, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35944956

RESUMO

Phaeocystis is a globally widespread marine phytoplankton genus, best known for its colony-forming species that can form large blooms and odorous foam during bloom decline. In the North Sea, Phaeocystis globosa typically becomes abundant towards the end of the spring bloom, when nutrients are depleted and the share of mixotrophic protists increases. Although mixotrophy is widespread across the eukaryotic tree of life and is also found amongst haptophytes, a mixotrophic nutrition has not yet been demonstrated in Phaeocystis. Here, we sampled two consecutive Phaeocystis globosa spring blooms in the coastal North Sea. In both years, bacterial cells were observed inside 0.6 - 2% of P. globosa cells using double CARD-FISH hybridizations in combination with laser scanning confocal microscopy. Incubation experiments manipulating light and nutrient availability showed a trend towards higher occurrence of intracellular bacteria under P-deplete conditions. Based on counts of bacteria inside P. globosa cells in combination with theoretical values of prey digestion times, maximum ingestion rates of up to 0.08 bacteria cell-1 h-1 were estimated. In addition, a gene-based predictive model was applied to the transcriptome assemblies of seven Phaeocystis strains and 24 other haptophytes to assess their trophic mode. This model predicted a phago-mixotrophic feeding strategy in several (but not all) strains of P. globosa, P. antarctica and other haptophytes that were previously assumed to be autotrophic. The observation of bacterial cells inside P. globosa and the gene-based model predictions strongly suggest that the phago-mixotrophic feeding strategy is widespread among members of the Phaeocystis genus and other haptophytes, and might contribute to their remarkable success to form nuisance blooms under nutrient-limiting conditions.


Assuntos
Haptófitas , Bactérias , Fitoplâncton , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa