Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(18): 7220-7230, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656924

RESUMO

Online and real-time analysis of a chemical process is a major analytical challenge that can drastically change the way the chemical industry or chemical research operates. With in situ analyses, a new and powerful understanding of chemistry can be gained; however, building robust tools for long-term monitoring faces many challenges, including compensating for instrument drift, instrument replacement, and sensor or probe replacement. Accounting for these changes by recollecting calibration data and rebuilding quantification models can be costly and time-consuming. Here, methods to overcome these challenges are demonstrated with an application of Raman spectroscopy to monitoring hydrogen isotopes with varied speciation within dynamic gas streams. Specifically, chemical data science tools such as chemometric modeling are leveraged along with several examples of calibration transfer approaches. Furthermore, the optimization of instrument and sensor cell parameters for targeted gas-phase analyses is discussed. While the particular focus on hydrogen is highly beneficial within the nuclear energy sector, mechanisms built and demonstrated here are widely applicable to optical spectroscopy monitoring in numerous other chemical systems that can be leveraged in other processes.

2.
Anal Chem ; 95(42): 15566-15576, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37787757

RESUMO

Carbon capture represents a key pathway to meeting climate change mitigation goals. Powerful next-generation solvent-based capture processes are under development by many researchers, but optimization and testing would be significantly aided by integrating in situ monitoring capability. Further, real-time water analysis in water-lean solvents offers the potential to maintain their water balance in operation. To explore data acquisition techniques in depth for this purpose, Raman spectra of CO2, H2O, and a single-component water-lean solvent, N-(2-ethoxyethyl)-3-morpholinopropan-1-amine (2-EEMPA) were collected at different CO2 and H2O concentrations using an in situ Raman cell. The quantification of CO2 and H2O loadings in 2-EEMPA was done by principal component regression and partial least squares methods with analysis of uncertainties. We conclude with discussions on how this simultaneous online analysis method to quantify CO2 and H2O loadings can be an important tool to enable the optimal efficiency of water-lean CO2 solvents while also maintaining the critical water balance under operating conditions relevant to post-combustion CO2 capture.

3.
Anal Chem ; 94(8): 3652-3660, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171558

RESUMO

Real-time and in situ process monitoring is a powerful tool that can empower operators of hazardous processes to better understand and control their chemical systems without increased risk to themselves. However, the application of monitoring techniques to complex chemical processes can face challenges. An example of this is the application of optical spectroscopy, otherwise capable of providing detailed chemical composition information, to processes exhibiting variable turbidity. Here, details on a novel combined Raman spectroscopy and turbidimetry probe are discussed, which advances current technology to enable flexible and robust in situ monitoring of a flowing process stream. Furthermore, the analytical approach to accurately account for both Raman signal and turbidity while quantifying chemical targets is detailed. This new approach allows for accurate analysis without requiring assumptions of stable process chemistry, which may be unlikely in applications such as waste cleanup. Through leveraging Raman and turbidity data simultaneously collected from the combined probe within chemometric models, accurate quantification of multiple chemical targets can be achieved under conditions of variable concentrations and turbidity.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos
4.
Anal Chem ; 94(50): 17467-17476, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36480638

RESUMO

Online spectroscopic measurements can be used to provide unique insight into complex chemical systems, enabling new understanding and optimization of chemical processes. A key example of this is discussed here with the monitoring of pH of various acid systems in real-time. In this work the acids used in multiple chemical separations processes, such as TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) and oxalate precipitation, were characterized. Raman spectroscopy, a robust optical approach that can be integrated in corrosive processes, was used to follow the unique fingerprints of the various protonated and deprotonated acid species. This data was analyzed using a hierarchical modeling approach to build a consolidated model scheme using optical fingerprints from all weak acids to measure pH associated with any of the weak acid systems studied here. Validation of system performance included utilizing Raman spectroscopy under dynamic flow conditions to monitor solution pH under changing process conditions in-line. Overall, the Raman based approach provided accurate analysis of weak acid solution pH.


Assuntos
Oxalatos , Análise Espectral Raman , Análise Espectral Raman/métodos , Quimiometria , Ácido Cítrico , Ácidos , Concentração de Íons de Hidrogênio
5.
Anal Chem ; 93(14): 5890-5896, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33780245

RESUMO

Complex chemical systems that exhibit varied and matrix-dependent speciation are notoriously difficult to monitor and characterize online and in real-time. Optical spectroscopy is an ideal tool for in situ characterization of chemical species that can enable quantification as well as species identification. Chemometric modeling, a multivariate method, has been successfully paired with optical spectroscopy to enable measurement of analyte concentrations even in complex solutions where univariate methods such as Beer's law analysis fail. Here, Raman spectroscopy is used to quantify the concentration of phosphoric acid and its three deprotonated forms during a titration. In this system, univariate approaches would be difficult to apply due to multiple species being present simultaneously within the solution as the pH is varied. Locally weighted regression (LWR) modeling was used to determine phosphate concentration from spectral signature. LWR results, in tandem with multivariate curve resolution modeling, provide a direct measurement of the concentration of each phosphate species using only the Raman signal. Furthermore, results are presented within the context of fundamental solution chemistry, including Pitzer equations, to compensate for activity coefficients and nonidealities associated with high ionic strength systems.

6.
Anal Chem ; 93(3): 1643-1651, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33337856

RESUMO

Microfluidics have many potential applications including characterization of chemical processes on a reduced scale, spanning the study of reaction kinetics using on-chip liquid-liquid extractions, sample pretreatment to simplify off-chip analysis, and for portable spectroscopic analyses. The use of in situ characterization of process streams from laboratory-scale and microscale experiments on the same chemical system can provide comprehensive understanding and in-depth analysis of any similarities or differences between process conditions at different scales. A well-characterized extraction of Nd(NO3)3 from an aqueous phase of varying NO3- (aq) concentration with tributyl phosphate (TBP) in dodecane was the focus of this microscale study and was compared to an earlier laboratory-scale study utilizing counter current extraction equipment. Here, we verify that this same extraction process can be followed on the microscale using spectroscopic methods adapted for microfluidic measurement. Concentration of Nd (based on UV-vis) and nitrate (based on Raman) was chemometrically measured during the flow experiment, and resulting data were used to determine the distribution ratio for Nd. Extraction distributions measured on the microscale were compared favorably with those determined on the laboratory scale in the earlier study. Both micro-Raman and micro-UV-vis spectroscopy can be used to determine fundamental parameters with significantly reduced sample size as compared to traditional laboratory-scale approaches. This leads naturally to time, cost, and waste reductions.

7.
Environ Sci Technol ; 55(19): 12943-12950, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34529406

RESUMO

The Hanford site represents a complicated environmental remediation challenge, remaining from the production of nuclear weapons. Over 100 million gallons of liquid radioactive waste of unknown composition will be chemically processed and vitrified, but the varying chemical composition and highly radioactive nature of the waste preclude the implementation of more developed, offline technologies to determine the composition. The only practical approach to waste treatment will require the significant utilization of real-time, chemometric modeling approaches. Although chemometric approaches have been applied to the analysis of Hanford waste, the models developed were highly tank-specialized, and limited discussion was provided on how models fared with interfering signals. As the tank waste is largely composed of oxoanions, which tend to have interfering Raman spectra, the general question was posed as to what chemometric approach is best suited to accurately quantify analytes in the presence of interfering signals. This was carried out by examining the ability of classical least square (CLS), principal component regression (PCR), partial least square (PLS), and locally weighted regression (LWR) to quantify NO3- and CO32- using their bands around 1050 cm-1. For all samples, the PLS-based model was found to be the most efficient approach from a model building and application perspective.


Assuntos
Recuperação e Remediação Ambiental , Resíduos Radioativos , Análise dos Mínimos Quadrados , Resíduos Radioativos/análise
8.
Environ Sci Technol ; 55(6): 3898-3908, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33411509

RESUMO

Molten salt reactors (MSRs) have the potential to safely support green energy goals while meeting baseload energy needs with diverse energy portfolios. While reactor designers have made tremendous strides with these systems, licensing and deployment of these reactors will be aided through the development of new technology such as on-line and remote monitoring tools. Of particular interest is quantifying reactor off-gas species, such as iodine, within off-gas streams to support the design and operational control of off-gas treatment systems. Here, the development of advanced Raman spectroscopy systems for the on-line analysis of gas composition is discussed, focusing on the key control species I2(g). Signal response was explored with two Raman instruments, utilizing 532 and 671 nm excitation sources, as a function of I2(g) pressure and temperature. Also explored is the integration of advanced data analysis methods to enable real-time and highly accurate analysis of complex optical data. Specifically, the application of chemometric modeling is discussed. Raman spectroscopy paired with chemometric analysis is demonstrated to provide a powerful route to analyzing I2(g) composition within the gas phase, which lays the foundation for applications within molten salt reactor off-gas analysis and other significant chemical processes producing iodine species.


Assuntos
Iodo , Análise Espectral Raman , Espectrometria de Fluorescência
9.
Anal Chem ; 92(8): 5882-5889, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32223185

RESUMO

Measurement of pH is an integral component of chemical studies and process control; however, traditional pH probes are difficult to utilize in harsh or complex chemical systems. Optical spectroscopy-based online monitoring offers a powerful and novel route for characterizing system parameters, such as pH, and is well adapted to deployment in harsh environments or chemically complex systems. Specifically, Raman spectroscopy combined with chemometric analysis can provide an improved method of online p[H+] measurement. Multivariate curve resolution (MCR) analysis of Raman spectra can be utilized to determine speciation as a function of p[H+], and the MCR scores assigned to each species can be used to calculate p[H+]. Subsequent chemometric modeling can be used to correlate spectral response to p[H+]. This was demonstrated with phosphoric acid, a chemical system known to challenge traditional pH probes. Raman spectra exhibit clear changes with pH due to changing speciation, and chemometric modeling can be successfully utilized to correlate those fingerprints to p[H+]. With the use of this approach, p[H+] of the phosphoric acid system can be accurately measured without foreknowledge of system conditions such as ionic strength.

10.
Inorg Chem ; 59(10): 6826-6838, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32368911

RESUMO

Plutonium (Pu) exhibits a complex redox behavior in aqueous solutions. This is due to the ability of the element to adapt a wide range of oxidation states typically from +3 to +6 and the tendency for dynamic interconversion between the oxidation states that primarily depend upon acid concentration and presence of coordinating ligands. This work interrogates the Pu redox behavior in aqueous nitric acid via a combination of voltammetry and in situ vis-NIR spectroelectrochemistry under controlled potentials to map the interconversion between the various Pu oxidation states. The NIR-spectroelectrochemistry studies used to complement the visible spectroscopy bring a new and more complete perspective into the plutonium redox transformations. This allows elucidation of the mechanisms of the involved redox reactions facilitating an in-depth understanding of the relative stability of the Pu oxidation states as a function of redox potentials and nitric acid concentrations. It is observed that oxidation of Pu(III) results in generation of Pu(IV) and Pu(VI) (the latter as PuO22+), bypassing the Pu(V) oxidation state. Further, with increasing acid concentrations, the formation of the Pu(VI) species progressively decreases so that the dynamic equilibrium between the Pu(III) and Pu(IV) oxidation states dominates. These findings have significant implications for developing separation processes for used nuclear fuel reprocessing and treatment.

11.
J Phys Chem A ; 124(46): 9578-9588, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33153259

RESUMO

Iodine monochloride (ICl) is a potential off-gas product of molten salt reactors; monitoring this heteronuclear diatomic molecule is of great interest for both environmental and safety purposes. In this paper, we investigate the possibility of infrared monitoring of ICl by measuring the far-infrared absorption cross section of its fundamental band near 381 cm-1. We have performed quantitative studies of the neat gas in a 20 cm cell at 25, 35, 50, and 70 °C at multiple pressures up to ∼9 Torr and investigated the temperature and pressure dependencies of the band's infrared cross section. Quantitative measurements were problematic due to sample adhesion to the cell walls and windows as well as reactions/possible hydrolysis of ICl to form HCl gas. Effects were mitigated by measuring only the neat gas, using short measurement times, and subtracting out the partial pressure of the HCl(g). The integrated band strength is shown to be temperature independent and was found to be equal to 9.1 × 10-19 (cm2/molecule) cm-1. As expected, the temperature dependence of the band profile showed only a small effect over this limited temperature range. We have also investigated using the absorption data along with inverse least squares multivariate methods for the quantitative monitoring of ICl effluent concentrations under different scenarios using infrared (standoff) sensing and compare these results with traditional Beer's law (univariate) techniques.

12.
Anal Chem ; 90(4): 2548-2554, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29381059

RESUMO

Microfluidic devices are a growing field with significant potential for applications to small scale processing of solutions. Much like large scale processing, fast, reliable, and cost-effective means of monitoring streams during processing are needed. Here we apply a novel micro-Raman probe to the online monitoring of streams within a microfluidic device. For either macro- or microscale process monitoring via spectroscopic response, interfering or confounded bands can obfuscate results. By utilizing chemometric analysis, a form of multivariate analysis, species can be accurately quantified in solution despite the presence of overlapping or confounding spectroscopic bands. This is demonstrated on solutions of HNO3 and NaNO3 within microflow and microfluidic devices.

13.
Anal Chem ; 90(20): 11812-11819, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30198252

RESUMO

Characterization of long-term processes occurring during alteration of aluminoborosilicate glasses is relevant for natural as well as man-made materials. Static dissolution tests are a common setup for such studies, but the obtained results and related errors are impacted by the frequency and protocol of samplings performed to determine release via solution analysis, e.g., ICP-OES. A noninvasive method was developed to continuously monitor glass alteration based on in situ Raman spectrometry of the solution contained in the alteration vessel. The alteration of a benchmark glass, the environment assessment (EA) glass, for 7 days at 90 °C showed that the pH and boron concentration results obtained from solution monitoring and ICP-OES quantification were similar to the pH and boron results obtained from chemometric modeling of the Raman spectra and within error of previously published results in similar conditions. The errors on altered amounts of glass based on B release were similar for both in situ Raman and ICP-OES. The new Raman method provides a more detailed picture of real time monitoring of an alteration experiment, with intervals between monitoring times as short as dozens of seconds. The in situ Raman method also helps to reduce perturbation to experiments caused by the physical sampling of aliquots (including temperature excursions, re-equilibration with atmosphere, volume variation, and potential chemical contamination) by limiting their number and frequency.

14.
Anal Chem ; 90(14): 8345-8353, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29733195

RESUMO

Microfluidic devices provide ideal environments to study solvent extraction. When droplets form and generate plug flow down the microfluidic channel, the device acts as a microreactor in which the kinetics of chemical reactions and interfacial transfer can be examined. Here, we present a methodology that combines chemometric analysis with online micro-Raman spectroscopy to monitor biphasic extractions within a microfluidic device. Among the many benefits of microreactors is the ability to maintain small sample volumes, which is especially important when studying solvent extraction in harsh environments, such as in separations related to the nuclear fuel cycle. In solvent extraction, the efficiency of the process depends on complex formation and rates of transfer in biphasic systems. Thus, it is important to understand the kinetic parameters in an extraction system to maintain a high efficiency and effectivity of the process. This monitoring provided concentration measurements in both organic and aqueous plugs as they were pumped through the microfluidic channel. The biphasic system studied was comprised of HNO3 as the aqueous phase and 30% (v/v) tributyl phosphate in n-dodecane comprised the organic phase, which simulated the plutonium uranium reduction extraction (PUREX) process. Using pre-equilibrated solutions (post extraction), the validity of the technique and methodology is illustrated. Following this validation, solutions that were not equilibrated were examined and the kinetics of interfacial mass transfer within the biphasic system were established. Kinetic results of extraction were compared to kinetics already determined on a macro scale to prove the efficacy of the technique.

15.
Analyst ; 143(5): 1188-1196, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29417962

RESUMO

To simplify and improve the safety of reprocessing used nuclear fuel, an initial assessment was made of Raman microscopy applied to microfluidic volumes with a view toward the on-line spectroscopic measurement of highly radioactive solutions. This study compares a microscopic Raman probe (excitation focal point diameter 70 µm) to a larger, well studied probe (excitation focal point diameter 125 µm) used in prior investigations. This was done by chemometrically modeling and predicting concentrations of HNO3 solutions (0 M to 8 M) as they flowed through microfluidic cells based upon spectra from each probe. Spectra recorded for each probe using the same static HNO3 solution set contained in 2 dram glass vials were used as training sets to produce models for the respective probes. Modeling required baseline, normalization and smoothing preprocessing to compensate for a reduced path length between the static glass vial training set (4 cm) and the reduced path length flow cell (1 cm), wide ranging solution concentrations, and the associated non-linear spectral changes, and abrupt and uneven concentration changes of flowing solutions. The micro-Raman probe is able to produce spectra that may be analyzed chemometrically to accurately predict the concentration of flowing HNO3 solutions down to microliter volumes. Based upon RMSECV and RMSEP modeling statistics concentration predictions of the micro-Raman probe are comparable to those obtained for a macro-Raman on identical samples.

16.
Environ Sci Technol ; 52(3): 1357-1364, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29240997

RESUMO

A pretreatment protocol is presented that allows for the quantitative conversion and subsequent in situ spectroscopic analysis of [Re(CO)3]+ species in simulated Hanford tank waste. In this test case, the nonradioactive metal rhenium is substituted for technetium (Tc-99), a weak beta emitter, to demonstrate proof of concept for a method to measure a nonpertechnetate form of technetium in Hanford tank waste. The protocol encompasses adding a simulated waste sample containing the nonemissive [Re(CO)3]+ species to a developer solution that enables the rapid, quantitative conversion of the nonemissive species to a luminescent species which can then be detected spectroscopically. The [Re(CO)3]+ species concentration in an alkaline, simulated Hanford tank waste supernatant can be quantified by the standard addition method. In a test case, the [Re(CO)3]+ species was measured to be at a concentration of 38.9 µM, which was a difference of 2.01% from the actual concentration of 39.7 µM.


Assuntos
Resíduos Radioativos , Rênio , Animais , Espectrometria de Fluorescência , Suínos , Tecnécio
17.
Environ Sci Technol ; 52(14): 7796-7804, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29895141

RESUMO

The quantitative conversion of nonpertechnetate [Tc(CO)3]+ species in nuclear waste storage tank 241-AN-102 at the Hanford Site is demonstrated. A waste sample containing the [Tc(CO)3]+ species is added to a developer solution that rapidly converts the nonemissive species into a luminescent complex, which is detected spectroscopically. This method was first demonstrated using a [Tc(CO)3]+ sample of nonwaste containing matrix to determine a detection limit (LOD), resulting in a [Tc(CO)3]+ LOD of 2.20 × 10-7 M, very near the LOD of the independently synthesized standard (2.10 × 10-7 M). The method was then used to detect [Tc(CO)3]+ in a simulated waste using the standard addition method, resulting in a [Tc(CO)3]+ concentration of 1.89 × 10-5 M (within 27.7% of the concentration determined by ß liquid scintillation counting). Three samples from 241-AN-102 were tested by the standard addition method: (1) a 5 M Na adjusted fraction, (2) a fraction depleted of 137Cs, and (3) an acid-stripped eluate. The concentrations of [Tc(CO)3]+ in these fractions were determined to be 9.90 × 10-6 M (1), 0 M (2), and 2.46 × 10-6 M (3), respectively. The concentration of [Tc(CO)3]+ in the as-received AN-102 tank waste supernatant was determined to be 1.84 × 10-5 M.


Assuntos
Resíduos Radioativos , Animais , Suínos
18.
Anal Chem ; 89(14): 7324-7332, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28605581

RESUMO

A novel microfabricated optically transparent thin-film electrode chip for fluorescence and absorption spectroelectrochemistry has been developed. The working electrode was composed of indium tin oxide (ITO); the quasi-reference and auxiliary electrodes were composed of platinum. The stability of the platinum quasi-reference electrode was improved by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference was characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic voltammetry measurements showed that the electrode chip was comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe(CN)6] in 0.1 M KCl using the electrode chip gave a diffusion coefficient of 1.59 × 10-6 cm2/s, in comparison to the value of 2.38 × 10-6 cm2/s using a standard electrochemical cell. By using the electrode chip in an optically transparent thin-layer electrode (OTTLE), the absorption based spectroelectrochemical modulation of [Fe(CN)6]3-/4- was demonstrated, as well as the fluorescence based modulation of [Ru(bpy)3]2+/3+. For the fluorescence spectroelectrochemical determination of [Ru(bpy)3]2+, a detection limit of 36 nM was observed.

19.
Anal Chem ; 89(17): 9354-9359, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28727912

RESUMO

Development of more effective, reliable, and fast methods for monitoring process streams is a growing opportunity for analytical applications. Many fields can benefit from online monitoring, including the nuclear fuel cycle where improved methods for monitoring radioactive materials will facilitate maintenance of proper safeguards and ensure safe and efficient processing of materials. Online process monitoring with a focus on optical spectroscopy can provide a fast, nondestructive method for monitoring chemical species. However, identification and quantification of species can be hindered by the complexity of the solutions if bands overlap or show condition-dependent spectral features. Plutonium(IV) is one example of a species which displays significant spectral variation with changing nitric acid concentration. Single variate analysis (i.e., Beer's Law) is difficult to apply to the quantification of Pu(IV) unless the nitric acid concentration is known and separate calibration curves have been made for all possible acid strengths. Multivariate or chemometric analysis is an approach that allows for the accurate quantification of Pu(IV) without a priori knowledge of nitric acid concentration.

20.
Analyst ; 142(13): 2426-2433, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28590000

RESUMO

A Lewis cell was designed and constructed for investigating solvent extraction systems by spectrophotometrically monitoring both the organic and aqueous phases in real time. This new Lewis cell was tested and shown to perform well compared to other previously reported Lewis cell designs. The advantage of the new design is that the spectroscopic measurement allows determination of not only metal ion concentrations, but also information regarding chemical speciation - information not available with previous Lewis cell designs. For convenience, the new Lewis cell design was dubbed COSMOFLEX (COntinuous Spectroscopic MOnitoring of Forrest's Liquid-liquid EXtraction cell). After construction performance testing was done for establishing the ideal stir speed range, UV-Vis measured concentration and D value determination. Each one of these tests was satisfactorily passed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa