Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 15(50): e1904906, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31668009

RESUMO

The adoption of graphene in electronics, optoelectronics, and photonics is hindered by the difficulty in obtaining high-quality material on technologically relevant substrates, over wafer-scale sizes, and with metal contamination levels compatible with industrial requirements. To date, the direct growth of graphene on insulating substrates has proved to be challenging, usually requiring metal-catalysts or yielding defective graphene. In this work, a metal-free approach implemented in commercially available reactors to obtain high-quality monolayer graphene on c-plane sapphire substrates via chemical vapor deposition is demonstrated. Low energy electron diffraction, low energy electron microscopy, and scanning tunneling microscopy measurements identify the Al-rich reconstruction 31 × 31 R ± 9 ° of sapphire to be crucial for obtaining epitaxial graphene. Raman spectroscopy and electrical transport measurements reveal high-quality graphene with mobilities consistently above 2000 cm2 V-1 s-1 . The process is scaled up to 4 and 6 in. wafers sizes and metal contamination levels are retrieved to be within the limits for back-end-of-line integration. The growth process introduced here establishes a method for the synthesis of wafer-scale graphene films on a technologically viable basis.

2.
Ultramicroscopy ; 250: 113749, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37186986

RESUMO

In the present work we investigate the growth of monolayer MoSe2 on selenium-intercalated graphene on Ru(0001), a model layered heterostructure combining a transition metal dichalcogenide with graphene, using low energy electron microscopy and micro-diffraction. Real-time observation of MoSe2 on graphene growth reveals the island nucleation dynamics at the nanoscale. Upon annealing, larger islands are formed by sliding and attachment of multiple nanometer-sized MoSe2 flakes. Local micro-spot angle-resolved photoemission spectroscopy reveals the electronic structure of the heterostructure, indicating that no charge transfer occurs within adjacent layers. The observed behavior is attributed to intercalation of Se at the graphene/Ru(0001) interface. The unperturbed nature of the proposed heterostructure therefore renders it as a model system for investigations of graphene supported TMD nanostructures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa